Cover: Confocal microscopy projection image of a mosaic Drosophila larval wing primordium, in which cells (green) have lost a tumor suppressor, Lgl, and simultaneously gained the transcription factor Ey, a homolog of the human PAX6 gene. Normally, Ey acts as a cell fate regulator and induces eye development. When ectopically expressed, it can induce eye formation in select development domains. This image reveals that gain of Ey can drive cancerous transformation in somatic clones displaying loss of Lgl, but only when they originate in the presumptive hinge region of the wing primordium; these transformed clones are marked by altered cytoarchitecture (actin, blue) and loss of a septate junction marker (Fas III, red). On page 1581, Gupta et al. report such selective developmental domain-specific tumor cooperation by various cell fate selectors, providing clues about their implications in human cancers. Image provided by Anjali Bajpai and licensed under a Creative Commons Attribution 4.0 International licence.

RESEARCH ARTICLES

1581 Selector genes display tumor cooperation and inhibition in *Drosophila* epithelium in a developmental context-dependent manner
Gupta, R. P., Bajpai, A. and Sinha, P.

1592 MCAM contributes to the establishment of cell autonomous polarity in myogenic and chondrogenic differentiation
Moreno-Fortuny, A., Bragg, L., Cossu, G. and Roostalu, U.

1602 Characterization and analysis of CCR and CAD gene families at the whole-genome level for lignin synthesis of stone cells in pear (*Pyrus bretschneideri*) fruit

1614 Release of condensin from mitotic chromosomes requires the Ran-GTP gradient in the reorganized nucleus
Aoki, K. and Niki, H.

1629 An evolutionarily conserved phosphatidate phosphatase maintains lipid droplet number and endoplasmic reticulum morphology but not nuclear morphology
Pillai, A. N., Shukla, S. and Rahaman, A.

1644 Autophagy promotes degradation of internalized collagen and regulates distribution of focal adhesions to suppress cell adhesion
Kawano, S., Torisu, T., Esaki, M., Torisu, K., Matsuno, Y. and Kitazono, T.

1654 Cloning, molecular evolution and functional characterization of ZmbHLH16, the maize ortholog of OsTIP2 (OsbHLH142)
Liu, Y., Li, J., Wei, G., Sun, Y., Lu, Y., Lan, H., Li, C., Zhang, S. and Cao, M.

1664 Amyloid β42 peptide is toxic to non-neural cells in *Drosophila* yielding a characteristic metabolite profile and the effect can be suppressed by Pi3K
Arnés, M., Casas-Tintó, S., Malmendal, A. and Ferrús, A.

1672 Phosphatase-regulated recruitment of the spindle- and kinetochore-associated (Ska) complex to kinetochores
Sivakumar, S. and Gorbsky, G. J.

1680 *Chlamydomonas* IFT25 is dispensable for flagellar assembly but required to export the BBSome from flagella

1692 Light regimes differentially affect baseline transcript abundance of stress-axis and (neuro)development-related genes in zebrafish (*Danio rerio* Hamilton 1822) AB and TL larvae
van den Bos, R., Zethof, J., Flik, G. and Gorissen, M.

1698 Tropical *Drosophila ananassae* of wet-dry seasons show cross resistance to heat, drought and starvation
Lambhod, C., Pathak, A., Munjal, A. K. and Parkash, R.

1707 Cullin-3 and its adaptor protein ANKFY1 determine the surface level of integrin β1 in endothelial cells
Maekawa, M., Tanigawa, K., Sakaue, T., Hiyoshi, H., Kubota, E., Joh, T., Watanabe, Y., Taguchi, T. and Higashiyama, S.

1720 Distribution of H3K27me3, H3K9me3, and H3K4me3 along autophagy-related genes highly expressed in starved zebrafish myotubes
Biga, P. R., Latimer, M. N., Froehlich, J. M., Gabillard, J.-C. and Seiliez, I.

1726 The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in *Xenopus* tadpoles

1734 F-actin reorganization by V-ATPase inhibition in prostate cancer
Licon-Munoz, Y., Michel, V., Fordyce, C. A. and Parra, K. J.

METHODS & TECHNIQUES

1745 Rapid isolation and expansion of skin-derived precursor cells from human primary fibroblast cultures
Budel, L. and Djabali, K.

1756 Re-evaluating the functional landscape of the cardiovascular system during development
Takada, N., Omae, M., Sagawa, F., Chi, N. C., Endo, S., Kozawa, S. and Sato, T. N.