
mesoderm fate. Retinoic acid, FGF and Wnt signals might also
affect the cell commitment of lateral plate mesoderm but their
effects may be stochastic within the EBs. Nevertheless, we cannot
exclude the possibility that the timing might have been another
factor; for instance, Bra-GFP+ cells isolated at slightly earlier or
later time-points might have expressed genes of other mesodermal
lineages.
Regarding the Bra-GFP+ isolated from the 2-D system, it was

found that these also did not integrate into developing nephrons or
UBs. Furthermore, only a small proportion of these cells appeared
to differentiate into endothelial cells. The majority of the cells
did not form interconnected cell networks and appeared to be
randomly dispersed throughout the stroma. Similarly to the

Bra-GFP+ cells from the cavitating EBs, the Bra-GFP+ cells
from the 2-D system did not show any noticeable up-regulation of
Gdnf orOsr1 in comparison with the Bra-GFP− cells. However, in
contrast to the EB-derived cells, those isolated from the 2-D
system did not show up-regulation of Foxf1, which is consistent
with their limited tendency to generate endothelial cells. It is
possible that the Bra-GFP+ cells from the 2-D system might have
differentiated into stromal cells, but it was not possible to test this
due to the lack of a stroma-specific antibody. It is interesting to
note that the Bra-GFP+ cells from the 2-D system expressed higher
levels of the stromal gene, Foxd1 (Mugford et al., 2008) compared
to those from the 3-D system, but the results were not statistically
significant.

Fig. 8. Confocal photomicrographs showing PECAM-1
immunostaining within day 5 ex vivo mouse
embryonic kidney rudiments comprising Bra-GFP+

derived from Bra-GFP/Rosa26-E2C mESCs cultured in
3-D and 2-D systems. (A-O) Immunostaining for E2C was
undertaken to identify the mesodermal cells, and PECAM-
1 immunostaining was performed to identify endothelial-
like cells. (A,D,G,J,M) Re-aggregated rudiments without
exogenous cells; (B,E,H,K,N) re-aggregated chimeric
rudiments containing E2C+ Bra-GFP+ cells isolated from
the 3-D culture system; (C,F,I,L,O) re-aggregated chimeric
rudiments containing E2C+ Bra-GFP+ cells isolated from
the 2-D culture system. Boxed regions are shown enlarged
in the magnified images in the bottom row. Data were
collected from three biological replicates. Scale bars:
200 µm (A–C); 50 µm (D–F).
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MATERIALS AND METHODS
Routine cell culture
Bra-GFP/Rosa26-E2CmESCs (Zhou et al., 2018) were maintained in 0.1%
gelatinised six-well tissue culture plates with mitomycin-C (Sigma-Aldrich,
M4287) inactivated STO (ATCC, SCRC-1049) feeder cells at 37°C in a
humidified incubator with 5%CO2 in Dulbecco’s modified Eagle’s medium
(DMEM) (Sigma-Aldrich, D6546) supplemented with 15% fetal bovine
serum (FBS) (Sigma-Aldrich, F2442), 1% minimum essential medium
(MEM) non-essential amino acid (Sigma-Aldrich, M7145), 2 mmol l−1

L-glutamine (Sigma-Aldrich, G7513), 0.1 mmol l−1 β-mercaptoethanol
(Gibco, 31350) and 1000 U ml−1 mouse leukaemia inhibitory factor (mLIF)
(Merck Millipore, ESG1107). Cells were passaged every other day and
those at passage 13–22 were used for experiments.

GFP-expressing mouse neonatal kidney-derived stem cells (GFP-KSCs)
(E. Ranghini, PhD thesis, 2011) were maintained in 60-mm tissue culture
dishes at 37°C in a humidified incubator with 5% CO2 in DMEM
supplemented with 10% FBS (Gibco, 10270), 1% MEM non-essential
amino acid (Sigma-Aldrich, M7145), 2 mmol l−1 L-glutamine (Sigma-
Aldrich, G7513) and 0.1 mmol l−1 β-mercaptoethanol (Gibco, 31350).
Cells were passaged 2–3 times per week and those at passage 17–20 were
used for experiments.

3-D EB system
mESCs were sub-cultured in gelatinised six-well tissue culture plates for
48 h to deplete feeder cells. Cells were then collected and seeded in 90-mm
bacterial petri dishes (Sterilin, Newport, UK; 101VR20) at the densities of
6.25×104, 1.25×105 and 2.5×105 cells ml−1 to form aggregates. The EBs
were maintained at 37°C in a humidified incubator with 5% CO2 in DMEM
supplemented with 10% FBS (Sigma-Aldrich, F2442), 1% MEM non-
essential amino acid, 2 mmol l−1 L-glutamine and 0.1 mmol l−1

β-mercaptoethanol for up to 9 days with a medium change every other
day. Each dish was split 1:2 on day 3 and EB morphology was examined on
days 4 and 7. Experiments were performed in three independent biological
replicates.

2-D system
mESCs were sub-cultured in gelatinised six-well tissue culture plates for 48 h
to deplete feeder cells. Cells were collected and plated into gelatinised six-well
plates at 1×105 cells per cm2 for 24 h. 2-D induction culture was based on the
protocols previously described (Turner et al., 2014a,b). Briefly, cells were
then harvested and re-plated into 60-mm tissue culture dishes at a density of
4.7×103 cells per cm2 with overnight incubation in mESC culture medium.
The following morning, medium was changed to NDiff® 227 (Clontech,
Saint-Germain-en-Laye, France; Y40002) for 48 h and then to NDiff® 227
supplemented with Activin-A (R&D Systems, Abingdon, UK; 338-AC) and
CHIR 99021 (Tocris, Abingdon, UK; 4423) to a final concentration of
100 ng ml−1 and 3 µmol l−1, respectively, for a further 48 h incubation.
Medium was changed on a daily basis. Experiments were carried out in three
independent biological replicates.

Cell-IQ real-time imaging
On day 3, EBs that were formed from mESCs at a plating density of
1.25×105 cells ml−1 were harvested and plated onto solidified 2% agarose
gel (Sigma-Aldrich, A9045) in glass bottom six-well plates (MatTek,
Bratislava, Slovakia; P06G-0-20-F). They were then embedded in a thin
overlay of 1% agarose. Each well was filled with 3 ml EB medium once the
overlaid gels were set. Plates were maintained in a Cell-IQ (Chip-Man
Technologies Ltd) imaging facility. EBs were imaged by the Cell-IQ Imagen
(Chip-Man Technologies Ltd) software on days 3 to 9 on an hourly basis.
Imaging data from both bright field and 488 nm laser for the GFP
fluorescence signal were documented from three independent biological
replicates. Raw data were analysed by the Cell-IQ Analyser (Chip-Man
Technologies Ltd) and ImageJ (https://imagej.nih.gov/ij/) software.

EB fixation and cryo-sectioning
EBs were harvested on day 7 and fixed with 4% paraformaldehyde (PFA).
They were then soaked in 15% sucrose followed by embedding in the 7.5%

molten gelatin. Samples were mounted onto cork disks with Shandon™
Cryomatrix™ embedding resin (Thermo Fisher Scientific, 6769006) and
cut with a cryostat at 20 µm.

Flow cytometry analysis
Single-cell suspensions of 1×106 cells ml−1 were obtained from 3-D or 2-D
culture systems and examined by a BD FACScalibur (BD Biosciences) flow
cytometer according to the manufacturer’s instructions, using a 488-nm
laser to detect the GFP signal. For analysis of the GFP expression window in
the EBs, wild-type E14TG2a-derived EBs were used as a negative control.
For analysis of GFP expression in the 2-D system, undifferentiated Bra-
GFP/Rosa26-E2C mESCs sub-cultured in gelatinised dishes in mESC
medium for 24 h prior to induction were used as a negative control. Data
were acquired from two biological replicates by the BD CellQuest (BD
Biosciences) software based on 104 events and analysed using Cyflogic
(http://www.cyflogic.com/) software.

FACS
Single-cell suspensions of 1×107 cells ml−1 were obtained from day 6 3-D EBs
or day 4 2-D monolayer cultures. Sorting was performed to isolate Bra-GFP+

cells using the BD FACSAria (BD Biosciences) flow sorter with the 530/30
bandpass filter and 502 longpass mirror. Day 6 EBs derived from wild-type
E14TG2a mESCs and undifferentiated Bra-GFP/Rosa26-E2C mESCs sub-
cultured in gelatinised dishes for 24 h prior to induced differentiation were used
as negative controls for 3-D and 2-D systems, respectively. Data output was
performed using BD FACSDiva (version 6.1.3) software. Experiments were
performed in three independent biological replicates.

qRT-PCR and statistical analysis
Cell lysis of FACS-sorted Bra-GFP+ populations, reverse transcription and
quantitative polymerase chain reaction (qPCR) amplification was performed
using the Fast SYBR® Green Cells-to-CT™ Kit (Thermo Fisher Scientific,
4405659) in accordance with the manufacturer’s instructions. Gene
transcription was detected by a CFX Connect Real-time PCR Detection
System (Bio-Rad) using specific primers validated in house (Table S2). The
reaction was set up with the following steps: 95°C for 20 s initial DNA
polymerase activation followed by 40 cycles of denaturation at 95°C for 3 s
and annealing/extension at 60°C for 30 s. qPCR specificity was assessed by
melt curves and then verified by agarose gel electrophoresis. Non-template
control was performed for each analysed gene and the non-reverse
transcriptase control was also included to verify the elimination of
genomic DNA. Three biological replicates for the Bra-GFP+ populations
isolated from 3-D and 2-D systems, and two biological replicates for
Bra-GFP− populations derived from the 3-D and 2-D systems were
assessed. For each reaction product analysed, two technical replicates were
prepared. Data were acquired using the incorporated Bio-Rad CFXManager
(version 3.1) software. Relative gene expression levels normalised to two
endogenous reference genes Gapdh and β-actin (ΔΔCt) and statistical
analysis were also performed using two-tailed Student’s t-test by the same
software, where P<0.05 was considered statistically significant.

Mouse embryonic kidney rudiment ex vivo culture
The mouse embryonic kidney rudiment ex vivo culture was based on the
protocols previously described (Unbekandt and Davies, 2010). Briefly,
kidneys were dissected out from embryonic day (E) 13.5 CD1 mouse
(Charles River) and dissociated into single cells following an incubation of
15 min in 0.25% trypsin/PBS (Sigma-Aldrich, T4174) with intermittent
gentle agitation. Cells were pelleted at 1 800× g for 2 min and re-suspended
in kidney rudiment medium comprising MEME (Sigma-Aldrich, M5650)
and 10% FBS. In the meantime, FACS-sorted Bra-GFP+ cells derived from
mESC 3-D or 2-D systems were collected in rudiment medium and counted.
A total of 2×105 cells were used in each rudiment, wherein kidney rudiment
cells and Bra-GFP+ cells were mixed at a ratio of 1:9. Rudiments were
cultured with Rho-associated, coiled-coil containing protein kinase inhibitor
(ROCKi, Y-27632, MerckMillipore, 688001) for 24 h followed by a further
4 days in the absence of ROCKi. Controls were also set up, including kidney
rudiments comprising GFP-KSCs (1:9 ratio of KSC: kidney rudiment cells),
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reaggregated kidney rudiments (formed by kidney rudiment cells only), and
intact kidney rudiments. Experiments were performed in three independent
biological replicates.

Immunofluorescence staining
For EB frozen section assay, sections were blocked in 10% serum solution
and incubated with E2C primary and secondary antibodies, followed by
nuclear counter-staining of 4′,6-diamidino-2-phenylindole (DAPI,
Thermo Fisher Scientific, D1306, 1/100,000). Slides were mounted with
DAKO fluorescent mounting medium (Agilent Technologies, Cheadle,
UK; S3023) and sealed for viewing on the DM2500 (Leica, Milton
Keynes, UK) fluorescence microscope with a 40× objective and
appropriate excitation and emission filter sets. Data were acquired using
the Leica Application Suite (LAS, Leica) integrated software and analysed
by ImageJ software.

For mouse embryonic kidney rudiments assay, immunofluorescence and
image analysis were carried out based on the protocols described previously
(Rak-Raszewska et al., 2012; Ranghini et al., 2013). Briefly, rudiments of
days 0 and 5 were fixed with 4% PFA and blocked with 10% serum solution
containing 0.1% Triton X-100, followed by incubation with primary
antibodies for E2C, megalin, Wt1, synaptopodin and PECAM-1, where
necessary. They were then incubated with secondary antibodies followed by
counter-staining of 10 µg µl−1 PNA (Vector Laboratories, Peterborough,
UK; RL-1072). Controls were also included as above to check for non-
specific binding of secondary antibodies. Samples were mounted with
DAKO fluorescent mounting medium (Agilent Technologies, S3023) and
sealed. Data were acquired using a LSM 510 META (Zeiss, Cambridge,
UK) multiphoton confocal laser scanning microscope with a 40× oil
immersion, 20× or 10× lens and appropriate excitation and emission filter
sets. Image data analysis was performed by ImageJ and Imaris (Bitplane,
version 9.0.2) software.

The following primary antibodies were used: rabbit polyclonal IgG E2C
(Clontech; 632496, 1/1 000), mouse monoclonal megalin IgG1 (Acris, Upper
Heyford, UK; DM3613P, 1/200), mouse monoclonal Wt1 (Millipore, 05–753,
1/100), mousemonoclonal synaptopodin IgG1 (Progen, Heidelberg, Germany;
65194, 1/2), rat monoclonal PECAM (BD Pharmingen, San Diego, USA;
550274, 1/100). Secondary antibodies used were Alexa Fluor (AF) 488-
conjugated chicken anti-rabbit IgG (Thermo Fisher Scientific, AF A21441, 1/
1000), AF594 goat anti-rabbit (Thermo Fisher Scientific, AFA11012, 1/1000),
AF488 goat anti-mouse IgG1 (Thermo Fisher Scientific, AFA21121, 1/1000),
AF647 donkey anti-mouse IgG (H+L) (Thermo Fisher Scientific, AFA31571,
1/1000), and AF488 donkey anti-rat IgG (H+L) (Thermo Fisher Scientific, AF
A21208, 1/1000).
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