Apolipoprotein CIII regulates lipoprotein-associated phospholipase A2 expression via the MAPK and NFκB pathways

Xiaolei Han1,*, Tiedong Wang1,*, Jifeng Zhang2, Xingxing Liu1, Zhuang Li1, Gangqi Wang1, Qi Song1, Daxin Pang1, Hongsheng Ouyang1 and Xiaochun Tang1,2

ABSTRACT

Apolipoprotein CIII (apo CIII), a small glycoprotein that binds to the surfaces of certain lipoproteins, is associated with inflammatory and atherogenic responses in vascular cells. Lipoprotein-associated phospholipase A2 (Lp-PLA2) has been proposed as an inflammatory biomarker and potential therapeutic target for cardiovascular disease (CVD). Here, we report that apo CIII increases Lp-PLA2 mRNA and protein levels in dose- and time-dependent manner in human monocytic THP-1 cells, and the increase can be abolished by MAPK and NFκB pathway inhibitors. Lp-PLA2 inhibitor, 1-linoleoyl glycerol attenuates the inflammation induced by apo CIII. In turn, exogenous Lp-PLA2 expression upregulates apo CIII and the upregulation can be inhibited by 1-linoleoyl glycerol in HepG2 cells. Moreover, plasma Lp-PLA2 level is correlated with apo CIII expression in pig liver. In vivo, Lp-PLA2 expression in monocytes and its activity in serum were significantly increased in human apo CIII transgenic porcine models compared with wild-type pigs. Our results suggest that Lp-PLA2 and apo CIII expression level is correlated with each other in vitro and in vivo.

KEY WORDS: Apolipoprotein CIII, Lipoprotein-associated phospholipase A2, MAPK pathway, NFκB pathway, Inflammation

INTRODUCTION

Atherosclerosis is a chronic inflammatory disease that is associated with hypertriglyceridemia, hypercholesterolemia and vascular cell dysfunction. Apolipoprotein CIII (apo CIII), a small glycoprotein, is synthesized by the liver and to a lesser extent by the intestines, is one of the major components of triglyceride-rich lipoproteins (TRL) (Aalto-Setälä et al., 1992). The overexpression of human apo CIII in mice, rabbits and pigs has been shown to reduce lipoprotein lipase (LPL) activity and lead to hypertriglyceridemia, apo CIII-enriched apolipoprotein B lipoproteins enhance the adhesion of human monocytes to ECs (Caron and Staels, 2008; Kawakami et al., 2006a; Kawakami et al., 2006b). Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a calcium-independent, secreted phospholipase A2 that binds to circulating lipoproteins and catalyzes the hydrolysis of oxidized LDL with a truncated sn-2 acyl chain to release inflammatory biomarker and potential therapeutic target for cardiovascular disease (CVD). Here, we report that apo CIII increases Lp-PLA2 mRNA and protein levels in dose- and time-dependent manner in human monocytic THP-1 cells, and the increase can be abolished by MAPK and NFκB pathway inhibitors. Lp-PLA2 inhibitor, 1-linoleoyl glycerol attenuates the inflammation induced by apo CIII. In turn, exogenous Lp-PLA2 expression upregulates apo CIII and the upregulation can be inhibited by 1-linoleoyl glycerol in HepG2 cells. Moreover, plasma Lp-PLA2 level is correlated with apo CIII expression in pig liver. In vivo, Lp-PLA2 expression in monocytes and its activity in serum were significantly increased in human apo CIII transgenic porcine models compared with wild-type pigs. Our results suggest that Lp-PLA2 and apo CIII expression level is correlated with each other in vitro and in vivo.

RESULTS AND DISCUSSION

Effects of apo CIII on Lp-PLA2 gene expression

Lp-PLA2, as an independent biomarker and regulator of atherosclerosis, the level may be regulated by lipid associated...
factors. Apo CIII level is closely related with hypertriglyceridemia. To investigate the effect of apo CIII on Lp-PLA2 expression level, we treated human monocytic THP-1 cells with apo CIII. As shown in Fig. 1, the levels of Lp-PLA2 mRNA and protein expression were increased in THP-1 cells incubated with apo CIII in serum-free medium in a dose- and time-dependent manner (Fig. 1A–E). Furthermore, apo CIII-transfected THP-1 cells also exhibited increased Lp-PLA2 expression and activity (Fig. 1F,G). These data suggest that apo CIII can induce Lp-PLA2 expression in vitro.

**Lp-PLA2 involves apo CIII-induced inflammation**

Apo CIII treatment significantly increases TNF-α, IL-6 and MCP-1 release from monocytic THP-1 cells (Fig. 2A–C). In circulation, Lp-PLA2 can act on oxidized LDL and produce oxidized fatty acids and lysophosphatidylcholine (LysoPC) which are proinflammatory factors. To address the question that if Lp-PLA2 mediates apo CIII’s proinflammatory effect, the Lp-PLA2 inhibitor 1-linoleoyl glycerol was used to pretreat the cells before apo CIII treatment. As shown in Fig. 2D–F, the pro-inflammatory effects of apo CIII were attenuated by 1-linoleoyl glycerol, and no inhibitory effect was observed in the cells that lack apo CIII. These results suggest that Lp-PLA2 at least partially mediates the effects of apo CIII on TNF-α, IL-6 and MCP-1 release in monocytic THP-1 cells.

**Apo CIII stimulates Lp-PLA2 expression is regulated by MAPK and NFκB pathways**

The nuclear factor (NF)-κ B and mitogen-activated protein kinase (MAPK)-dependent pathways were closely related to the inflammatory response in cells. Other researcher and our previous report demonstrated that NF-κ B and MAPK pathway mediate the regulation of Lp-PLA2 gene expression. Therefore, here we assessed the possibility that both pathways involve in regulating Lp-PLA2 expression by apo CIII in THP-1 cells. Apo CIII stimulated the phosphorylation of p65 NFkB and p42/44 MAPK and upregulated Lp-PLA2 expression (Fig. 3A–D). The MAPK kinase inhibitor PD98059 and NFκB inhibitor PDTC can completely block the increase in Lp-PLA2 mRNA and protein expression induced by apo CIII (Fig. 3D–G). These results indicate that the p65 NFκB and p42/44 MAPK pathways mediate the upregulation of Lp-PLA2 expression induced by apo CIII.
The relationship between apo CIII and Lp-PLA2 expression in vivo and Lp-PLA2 expression and activity in Apo CIII transgenic pigs

Twenty pigs samples of blood and liver tissues were collected to observe the expression of apo CIII and Lp-PLA2, the results show that the mRNA level of apo CIII and Lp-PLA2 are correlated (Fig. 4E). The previously developed apo CIII transgenic pigs specifically overexpress human apo CIII in the liver and intestines (Wei et al., 2012). The model was used to confirm the correlation of apo CIII and Lp-PLA2 expression. When fed a normal chow diet, the apo CIII transgenic pigs exhibited a 4-fold increase in plasma Lp-PLA2 activity and a 10-fold increase of Lp-PLA2 mRNA in macrophage compared to the wild-type controls (Fig. 4A,B). There was no change in the plasma Lp-PLA2 activity in wild-type pigs in the fasting or fed (olive oil) states (Fig. 4C). Interestingly, the Lp-PLA2 activity can be increased in the apo CIII transgenic pigs after ingesting olive oil for 2 h (Fig. 4C). These findings demonstrate that apo CIII may be responsible for the changes in Lp-PLA2 expression at the transcriptional level. In addition, we observed that exogenous Lp-PLA2 stable expressed in HepG2 cells could increase apo CIII mRNA level and the increased effects could be inhibited by 1-linoleoyl glycerol (Fig. 4D). Together these results suggested that increased apo CIII in liver could upregulate Lp-PLA2 expression via p65 NFκB and p42/44 MAPK pathways in macrophage in circulation. The increased Lp-PLA2 could stimulate macrophage inflammation independent with lipoproteins and the inflammatory factors in turn stimulate apo CIII expression in liver (Fig. 4F). The detailed mechanisms in the circle need to be further investigated.

MATERIALS AND METHODS

Animals and cells

The apo CIII transgenic pigs were developed using Chinese experimental miniature pig fibroblasts according to a previously described method, and they were fed a chow diet (Wei et al., 2012). For the experiments, wild-type and apo CIII transgenic pigs were administered olive oil orally (fat 23%) for fat load at 10 ml/kg body weight after a 16-h fast, and blood was collected for analysis. Human mononcytic THP-1 cells were donated by Dr. Yang’s lab (Jilin University) and maintained in RPMI-1640 medium with 10% fetal bovine serum (PAA, Austria). Pig monocytes were isolated from apo CIII transgenic or wild-type pigs using Histopaque-1077 (Sigma-Aldrich, USA). All of the animal experiments were conducted according to Jilin University Animal Care and Use Committee protocol no. 2008-11.

Reagents

Apolipoprotein C-III was purchased from Sigma-Aldrich. The antibodies p42/44, p-p42/44, p65 and p-p65 were purchased from Cell Signaling.
A schematic model of apolipoprotein CIII regulates Lp-PLA2 expression.

Fig. 4. The relationship between apo CIII and Lp-PLA2 expression in vivo and Lp-PLA2 expression and activity in Apo CIII transgenic pigs. Blood samples from apo CIII transgenic and wild-type pigs were collected, and the plasma was isolated for use in Lp-PLA2 activity assays. Mononuclear cells were isolated for total RNA extraction. (A) The plasma Lp-PLA2 activity in the wild-type and apo CIII transgenic pigs was assayed less than 2 h after plasma isolation. (B) Total RNA was extracted from the mononuclear cells, and quantitative PCR for Lp-PLA2 mRNA level was conducted. (C) The wild-type and transgenic pigs were fasted for 16 h and fed olive oil for 2 h, the plasma was isolated, and the Lp-PLA2 activity were measured. n=8 in the wild-type pigs, and n=4 in the apo CIII transgenic pigs. Error bars represent mean±s.e.m. (D) Lp-PLA2 stable expressed HepG2 cells were incubated with 1-linoleoyl glycerol for 2 h. Quantitative PCR was performed to determine the levels of apo CIII mRNA expression (n=3). (E) Blood and liver tissue were collected from slaughtered landraces, and quantitative PCR was performed to determine the levels of apo CIII mRNA expression in liver tissue and Lp-PLA2 mRNA expression in monocytes isolated from blood. Linear regression analysis is shown. *P<0.05, **P<0.01, ***P<0.0001. (F) A schematic model of apolipoprotein CIII regulates Lp-PLA2 expression.

The antibodies Lp-PLA2 and β-actin were obtained from Bioss. PD98059 and PDTC were purchased from Beyotime, and 1-linoleoyl glycerol was obtained from Boster.

The protein concentrations were determined using the Enhanced BCA protein assay kit (Beyotime, China). Equal amounts of protein were used for 12% SDS-PAGE and then transferred to nitrocellulose membranes. Immunoblots were performed with the indicated primary antibodies and the corresponding secondary antibodies. The signal was detected using BeyoECL Plus (Beyotime, China).

Lp-PLA2 activity

Blood was collected from pigs using anticoagulant EDTA tubes and centrifuged at 1000 g for 10 min. The plasma was analyzed using a PAF Acetylhydrolase kit (Cayman, USA) according to the manufacturer’s instructions.

Quantitative real-time PCR

Total RNAs from the pig monocytes, THP-1 cells, HepG2 cells and liver tissues were extracted using the TRNzolA+ reagent according to the manufacturer’s instructions. Mononuclear cells were isolated for total RNA extraction. (A) The plasma Lp-PLA2 activity in the wild-type and apo CIII transgenic pigs was assayed less than 2 h after plasma isolation. (B) Total RNA was extracted from the mononuclear cells, and quantitative PCR for Lp-PLA2 mRNA level was conducted. (C) The wild-type and transgenic pigs were fasted for 16 h and fed olive oil for 2 h, the plasma was isolated, and the Lp-PLA2 activity were measured. n=8 in the wild-type pigs, and n=4 in the apo CIII transgenic pigs. Error bars represent mean±s.e.m. (D) Lp-PLA2 stable expressed HepG2 cells were incubated with 1-linoleoyl glycerol for 2 h. Quantitative PCR was performed to determine the levels of apo CIII mRNA expression (n=3). (E) Blood and liver tissue were collected from slaughtered landraces, and quantitative PCR was performed to determine the levels of apo CIII mRNA expression in liver tissue and Lp-PLA2 mRNA expression in monocytes isolated from blood. Linear regression analysis is shown. *P<0.05, **P<0.01, ***P<0.0001. (F) A schematic model of apolipoprotein CIII regulates Lp-PLA2 expression.

The antibodies Lp-PLA2 and β-actin were obtained from Bioss. PD98059 and PDTC were purchased from Beyotime, and 1-linoleoyl glycerol was obtained from Cayman. Human MCP-1, TNF-α, and IL-6 Elisa Kits were obtained from Boster.

Immunoblotting

THP-1 cells were incubated with different combinations of reagents. For the expression analysis, the cells were lysed in cell lysis buffer (Beyotime, China) containing 1 mM PMSF and protein phosphatase inhibitor (Applygen, China) for 30 min on ice and were then centrifuged. The protein concentrations were determined using the Enhanced BCA protein assay kit (Beyotime, China). Equal amounts of protein were used for 12% SDS-PAGE and then transferred to nitrocellulose membranes. Immunoblots were performed with the indicated primary antibodies and the corresponding secondary antibodies. The signal was detected using BeyoECL Plus (Beyotime, China).

Quantification of proinflammatory cytokines

The levels of proinflammatory cytokines which stimulated by apo CIII were assayed less than 2 h after plasma isolation. (A) The plasma Lp-PLA2 activity in the wild-type and apo CIII transgenic pigs was assayed less than 2 h after plasma isolation. (B) Total RNA was extracted from the mononuclear cells, and quantitative PCR for Lp-PLA2 mRNA level was conducted. (C) The wild-type and transgenic pigs were fasted for 16 h and fed olive oil for 2 h, the plasma was isolated, and the Lp-PLA2 activity were measured. n=8 in the wild-type pigs, and n=4 in the apo CIII transgenic pigs. Error bars represent mean±s.e.m. (D) Lp-PLA2 stable expressed HepG2 cells were incubated with 1-linoleoyl glycerol for 2 h. Quantitative PCR was performed to determine the levels of apo CIII mRNA expression (n=3). (E) Blood and liver tissue were collected from slaughtered landraces, and quantitative PCR was performed to determine the levels of apo CIII mRNA expression in liver tissue and Lp-PLA2 mRNA expression in monocytes isolated from blood. Linear regression analysis is shown. *P<0.05, **P<0.01, ***P<0.0001. (F) A schematic model of apolipoprotein CIII regulates Lp-PLA2 expression.

The antibodies Lp-PLA2 and β-actin were obtained from Bioss. PD98059 and PDTC were purchased from Beyotime, and 1-linoleoyl glycerol was obtained from Cayman. Human MCP-1, TNF-α, and IL-6 Elisa Kits were obtained from Boster.

Immunoblotting

THP-1 cells were incubated with different combinations of reagents. For the expression analysis, the cells were lysed in cell lysis buffer (Beyotime, China) containing 1 mM PMSF and protein phosphatase inhibitor (Applygen, China) for 30 min on ice and were then centrifuged. The protein concentrations were determined using the Enhanced BCA protein assay kit (Beyotime, China). Equal amounts of protein were used for 12% SDS-PAGE and then transferred to nitrocellulose membranes. Immunoblots were performed with the indicated primary antibodies and the corresponding secondary antibodies. The signal was detected using BeyoECL Plus (Beyotime, China).

Lp-PLA2 activity

Blood was collected from pigs using anticoagulant EDTA tubes and centrifuged at 1000 g for 10 min. The plasma was analyzed using a PAF Acetylhydrolase kit (Cayman, USA) according to the manufacturer’s instructions.

Statistical analyses

The data are expressed as the mean±SEM and were analyzed using a two-tailed unpaired t test in the GraphPad Prism software. P<0.05 was considered to be statistically significant.

Acknowledgements

We thank Xuming Deng at Jilin University, Yuhui Wang and George Liu at the Peking University Health Science Center for their collaborative development of the apo CIII transgenic pigs and discussion for the paper.

Competing interests

The authors declare no competing or financial interests.

Author contributions


Funding

This work was supported by the National Natural Science Foundation [No. 31201874] and the China National Key Basic Research Program [973 Program, No. 2011CB801000].

References


Acknowledgements

We thank Xuming Deng at Jilin University, Yuhui Wang and George Liu at the Peking University Health Science Center for their collaborative development of the apo CIII transgenic pigs and discussion for the paper.

Competing interests

The authors declare no competing or financial interests.

Author contributions


Funding

This work was supported by the National Natural Science Foundation [No. 31201874] and the China National Key Basic Research Program [973 Program, No. 2011CB801000].
acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. 


