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Summary statement 
We develop a framework to quantify and model cell mixing independent of a choice of 

reference frames and apply this to study oscillator synchronization in the zebrafish 

segmentation clock. 

 

Abstract 
In development and disease, cells move as they exchange signals. One example is found in 

vertebrate development, where the timing of segment formation is set by a “segmentation 

clock” in which oscillating gene expression is synchronized across a population of cells by 

Delta-Notch signaling. Delta-Notch signaling requires local cell-cell contact, but in the 

zebrafish embryonic tailbud oscillating cells move rapidly, exchanging neighbors. Previous 

theoretical studies proposed that this relative movement or cell mixing might alter signaling 

and thereby enhance synchronization. However, it remains unclear whether the mixing 

timescale in the tissue is in the right range for this effect, because a framework to reliably 

measure the mixing timescale and compare it with signaling timescale is lacking. Here, we 

develop such a framework using a quantitative description of cell mixing without the need for 

an external reference frame, and constructing a physical model of cell movement based on 

the data. Numerical simulations show that mixing with experimentally observed statistics 

enhances synchronization of coupled phase oscillators, suggesting that mixing in the tailbud 

is fast enough to affect the coherence of rhythmic gene expression. Our approach will find 

general application to analyzing the relative movements of communicating cells during 

development and disease.  
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Introduction 
Tissue organization in animal embryos involves relative cell movement. The importance of 

cell movement in development has been emphasized, for example in gastrulation, tissue 

elongation, and neural development (Friedl and Gilmour, 2009; Rorth, 2009; Tada and 

Heisenberg, 2012). While on the move, cells communicate via mechanical and biochemical 

signaling and this can be local, for example when mediated by membrane-anchored proteins. 

Many developmental processes involve cell movement and local intercellular signaling 

simultaneously, which means that the relative durations, or timescales, of these processes 

may play a role in successful communication. Cells modify their internal states due to 

received signals and the time taken for this determines a signaling timescale. Movement that 

causes relative positional changes between cells is referred to as relative cell movement or 

cell mixing, and the time taken to exchange neighbors sets a mixing timescale. When the 

mixing timescale is similar to -or faster than- the local signaling timescale, cells can 

exchange neighbors and start new local interactions before completing the internal state 

change due to previous signaling events, and thus movement can affect the flow of 

information across a tissue (Uriu et al., 2014). However, little attention has been paid to the 

relation between the timescales of these two processes and how cell mixing affects local 

intercellular interactions and the resulting tissue organization.  

 

In this paper, we develop a framework to analyze and model cell mixing quantitatively using 

zebrafish somitogenesis as a model system, and apply the framework to determine the impact 

of cell mixing on synchronization of genetic oscillators. In somitogenesis, multi-cellular 

tissue blocks termed somites bud off rhythmically from the anterior end of the unsegmented 

tissue, which consists of the presomitic mesoderm (PSM) and more posteriorly, the tailbud. 

The timing of somite formation is controlled by genes showing oscillatory waves of 

expression in PSM and tailbud (Soroldoni et al., 2014). In zebrafish, these genes include her1, 

her7 and deltaC (Krol et al., 2011). Oscillatory expression is thought to be caused by delayed 

negative feedback regulation of her1 and her7 (Lewis, 2003; Schroter et al., 2012). These 

cells have been considered and modeled as a population of noisy autonomous oscillators 

(Webb et al., 2016) that can interact with neighboring cells through Delta-Notch signaling 

(Horikawa et al., 2006; Jiang et al., 2000; Riedel-Kruse et al., 2007). Blocking Notch 

signaling, either using mutants or a drug that blocks the activation of the Notch receptor 

(DAPT), revealed that synchronized oscillation of gene expression is necessary to make 

normal somites (Delaune et al., 2012; Liao et al., 2016; Mara et al., 2007; Ozbudak and 
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Lewis, 2008; Riedel-Kruse et al., 2007). Delta-Notch signaling also maintains 

synchronization between PSM cells in mouse embryos (Okubo et al., 2012; Shimojo et al., 

2016) and tissue cultures (Tsiairis and Aulehla, 2016). The collective rhythm arising from 

Delta-Notch interaction across the PSM is the temporal signal of a “segmentation clock” 

(Liao et al., 2016; Oates et al., 2012; Pourquie, 2011; Shimojo and Kageyama, 2016). In 

posterior PSM and tailbud, oscillation phase is spatially uniform, synchronized across the cell 

population.  

 

Cells carrying the genetic oscillators move around, exchanging neighbors in posterior PSM 

and tailbud (Benazeraf et al., 2010; Delfini et al., 2005; Dray et al., 2013; Kulesa and Fraser, 

2002; Lawton et al., 2013; Mara et al., 2007). Previous experiments focused on the role of 

cell movement in axis elongation using time-lapse imaging in zebrafish (Dray et al., 2013; 

Lawton et al., 2013; Mara et al., 2007; Steventon et al., 2016), and chick (Benazeraf et al., 

2010; Delfini et al., 2005). Cells in PSM and tailbud extend protrusions (Benazeraf et al., 

2010; Manning and Kimelman, 2015), and are thought to possess intrinsic motility. These 

studies also revealed signaling molecules driving cell movement in posterior PSM and 

tailbud of chick. Fgf forms a spatial gradient across the PSM with highest concentration in 

the tailbud (Dubrulle and Pourquie, 2004), and activates cell movement (Benazeraf et al., 

2010; Delfini et al., 2005). Cells in anterior PSM show reduced cell movements due to low 

levels of Fgf signaling and epithelialization (Delfini et al., 2005). Combined, these 

experimental observations raise the question of how cell mixing in posterior PSM and tailbud 

influences synchronization of genetic oscillators. 

 

Previous theoretical studies suggested that cell mixing in the tailbud could promote 

synchronization across a population of genetic oscillators (Uriu et al., 2012; Uriu and Morelli, 

2014; Uriu et al., 2010). Movement of oscillators can effectively extend their interaction 

range (Fujiwara et al., 2011; Peruani et al., 2010; Uriu, 2016; Uriu et al., 2013). However, an 

enhancement of synchronization is only possible if the timescale of cell mixing is faster than 

the timescale of cell signaling. These previous theoretical studies assumed such faster cell 

mixing and analyzed its effect on synchronization of oscillators. While the timescale of cell 

signaling has been estimated from experiments where synchronization is perturbed by 

blocking Notch with DAPT (Herrgen et al., 2010; Riedel-Kruse et al., 2007), the timescale of 

cell mixing has not been measured. Previous studies of cell movement provided 

measurements of velocity and mean squared displacement (MSD) of single cells (Benazeraf 

et al., 2010; Lawton et al., 2013), but how often cells exchange neighbors has not yet been 
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quantified. For this, knowledge of the cells' velocity is not sufficient; rather the relative 

motion of cells is required. Furthermore, direct comparison between mixing and signaling 

timescales is not trivial because complex cell movement patterns in the zebrafish tailbud 

(Lawton et al. 2013) may prevent characterization of cell mixing with a single timescale 

(Uriu and Morelli 2017). Hence, a method to deal with these challenges rigorously and 

systematically needs to be developed. 

 

Here we propose a framework motivated by the question of whether cell mixing in the 

zebrafish PSM is fast enough to affect synchronization of genetic oscillators. This starts with 

quantifying cell mixing across zebrafish PSM and tailbud using embryonic time-lapse images 

at single cell resolution. To characterize cell mixing we compute spatial derivatives of cell 

velocities and mean squared difference of displacement vectors (MSDD) (Uriu and Morelli, 

2014) from cell-tracking data. This removes any global tissue motions in the imaging 

reference frame and yields the relative motion of cell-pairs. Then, we fit a physical model of 

cell movement and reproduce the cell mixing observed across the tissue. Finally, we simulate 

synchronization dynamics of coupled phase oscillators in the presence of reproduced cell 

mixing and show that the reproduced cell mixing enhances synchronization. Thus, the 

proposed approach gives a general and systematic framework to quantitatively analyze cell 

mixing in development. Its application suggests that cell mixing in zebrafish tailbud is indeed 

fast enough to affect synchronization dynamics of the segmentation clock. 

 

Results 
Single cell tracking 

Cell movement can be estimated using the position of each cell’s nucleus as a reference point. 

The nuclei of cells in tailbud, PSM and posterior somites in zebrafish embryos (n = 4) were 

imaged with high temporal resolution for an interval corresponding to the formation of one 

somite, starting at the 15-17 somite stage (ss) from a lateral orientation by confocal 

microscopy using a setup for multiple-embryo time-lapse recording (Fig. 1A and Movie 1) 

(Bhavna et al., 2016). To detect the position of each nucleus, we used the gradient vector 

diffusion algorithm proposed by Li et al (Li et al., 2007). For cell tracking, we adopted an 

algorithm based on nearest neighbor linking of objects between two successive time frames t 

and t+1 (Fig. 1B) (Sbalzarini and Koumoutsakos, 2005). 
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Validation of cell tracks 

Embryos in this study were transgenic chimeras in which cells carrying both mCherry and 

GFP-tagged Histones as nuclear labels were transplanted at blastula stage to stage-matched 

host embryos carrying only GFP-Histone. The sparsely distributed mCherry nuclear signal 

was an internal ground-truth data set (Bhavna et al., 2016) to allow validation of our nuclear 

detection and cell-tracking algorithms (Supporting Text) (Bhavna et al., 2016). Parameters in 

the gradient vector diffusion algorithm were determined by calibration using synthetic images 

with similar nuclear density and image signal-to-noise ratios to our embryonic data. To 

quantify accuracy we defined sensitivity as the fraction of objects correctly detected by the 

algorithm to the total number of objects in a synthetic image, and precision as the fraction of 

correctly detected objects to the total number of detected objects (Supporting Text). The 

sensitivity of the algorithm with optimized parameter set was ~90% and precision was ~95% 

in synthetic images with relevant object densities (Fig. S1A). Sensitivity of the algorithm in 

transplanted embryos ranged between 0.96 and 0.98 (Fig. S1B).  The fraction of cells with 

incorrect trajectories was low (0-2%, Fig. S1C,D). Although the tracking algorithm 

occasionally missed cells at some time point, resulting in a trajectory shorter than the 

recording’s length (Fig. S1E), this does not lead to incorrect calculations of cell 

displacements in later analysis, which arise primarily from incorrect linking. 

 

Cell mixing 

A key property of cell movement that affects synchronization is local rearrangement, which 

will result in the mixing of neighboring oscillators (Uriu and Morelli, 2014). From cell 

trajectories it is straightforward to compute cell velocity. However, velocity computed in the 

lab reference frame includes contributions of spontaneous cell movement and also global 

tissue motion: embryos can move on the microscope stage, and the body axis deforms and 

elongates as a result of normal development. Consequently, velocity vectors in the lab 

reference frame do not reveal relative positional changes of cells. Below, we introduce two 

different methods to quantify cell mixing, namely the directional derivative of velocity 

vectors and the MSDD. 

 

Directional derivative of velocity vectors. Local cell rearrangement may be quantified by 

the velocity difference of neighboring cells. A large velocity difference indicates that 

neighboring cells move in different directions resulting in relative positional changes. We 
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compute the difference of velocity vectors for a pair of neighboring cells i and j at position xi 

and xj as 

Dvሺxiሻൣδij൧ ൌ
v൫xj൯	– vሺxiሻ

หxj – xiห
ൌ

v൫xi ൅ δij൯	– vሺxiሻ

หδijห
,																																																																	(1) 

where δij=xj–xi. Eqn 1 approximates the spatial derivative of velocity vectors along vector 

δij. We refer to Dvሺxiሻൣδij൧ as the directional derivative. To determine the magnitude of 

local velocity variations at cell position xi, we compute the average of directional derivative 

modulus over neighboring cells 

Dvሺxiሻ	=	
1

ni
෍ หDvሺxiሻൣδij൧ห

j∈൛หδijห	≤	δൟ

,																																																																																											(2) 

where ni is the total number of neighboring cells satisfying หδijห	≤	δ and summation is over 

all neighboring cells j. By subtracting two neighboring cells’ velocities, the components of 

velocity drifts due to embryonic movement and tissue deformations are cancelled out, and 

only components due to relative movement remain. Thus, Dv is a proxy for the magnitude of 

cell mixing. 

 

Fig. 1C shows the spatial profile of Dv along the PSM of a 17ss embryo. Based on the cell 

diameter estimated from the embryonic images (Fig. S2A, Supporting Text), we set = 16 

μm in Eqn 2. The spatial gradient of Dv is highest at the posterior and progressively decreases 

in the anterior direction. Greater local velocity variations are observed in most cells in the 

tailbud, indicative of cell mixing, whereas few cells in anterior PSM have high values of Dv. 

These higher values may be local fluctuations of velocity vectors due to cell intercalations or 

extrusions. In addition, relatively higher Dv can be observed in cells in the connecting tissue 

between embryo and yolk because of this tissue's local deformation. We observed a similar 

spatial profile of Dv over time in the embryo (Fig. S3A-C). Spatial profiles of Dv among 

different embryos were quantitatively similar (Fig. S3D-F). Thus, the average directional 

derivative modulus indicates the presence of high cell mixing in the tailbud. We also 

quantified local velocity variations using strain rate tensor along the axis (Supporting Text) 

and obtained qualitatively similar spatial profiles of the magnitude of mixing (Fig. S4). 

 

Mean squared difference of displacement vectors (MSDD). The directional derivatives 

contain information about short timescales of cell movement. To explore long time signatures 

of the movement pattern and reveal whether the cells’ motion is relevant for synchronization, 

we introduced MSDD (Gerlich and Ellenberg, 2003; Uriu and Morelli, 2014). Using nuclear 

positions xi obtained by the tracking algorithm, MSDD m(t) was defined as: 
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m t   1

nt

xi t  t0
(ij )   xi t0

(ij )   x j t  t0
(ij )   x j t0

(ij )  
2

i, j

 ,       (3) 

where t0
(ij) is the time when cells i and j, for the first time, satisfy |xi(t0

(ij))–xj(t0
(ij))| r in the 

imaging period and nt is the total number of pairs with the value t. Note, the value of t0
(ij) can 

be different for each pair of cells i and j. We set the distance threshold for averaging r = 16 

μm, which is close to measured cell size (Fig. S2A). This restricts cell pairs to initial 

neighbors, avoiding the contribution of spatially heterogeneous tissue motions. The relation 

between MSDD and MSD is described in (Uriu and Morelli, 2017). 

 

Fig. 2 shows time evolution of MSDD in three selected regions of a 17ss embryo. We set a 

three-dimensional box in a local region (Fig. 2A) and used cells within the box to compute 

MSDD defined in Eqn 3 (Materials and Methods). MSDD increased more rapidly in the 

posterior region than in the anterior, which indicated that relative cell movement was faster in 

the posterior than the anterior (Fig. 2B). This is consistent with analysis of directional 

derivative of velocity vectors (Fig. 1, Fig. S3) and strain rate tensor (Fig. S4) described above. 

We observed two regimes in MSDD curves. If cell movement was a random walk, we expect 

a linear increase of MSDD over time (Uriu and Morelli, 2017). For cells in the tailbud, 

MSDD increased almost linearly m(t)  t at shorter time (t < 3 min) while at longer time (t > 

3 min) it increased as a power law of t, m(t)  t1.5. This exponent indicates that cell 

movement in zebrafish tailbud is not a simple random walk, in contrast to reported 

movements in chick embryos (Benazeraf et al., 2010). Note that this two-phase behavior of 

MSDD cannot be explained by a persistent random walk model because its MSDD should 

behave as m(t)  t2 at shorter time (Gardiner, 2009). To confirm this behavior, we applied a 

second, recently proposed segmentation algorithm (Bhavna et al., 2016) and obtained similar 

results (Fig. S5). 

 

In regions more anterior to the tailbud, we observed a similar tendency of the MSDD, but 

values of exponents decreased to less than one, indicating sub-diffusive cellular motions (Fig. 

2B). We obtained quantitatively consistent MSDD among the other three embryos at similar 

developmental stages (Fig. S6). 

 

Power law behaviors of MSDD described above preclude computation of a single timescale 

of cell mixing such as the diffusion constant of cells. This makes it difficult to directly 

compare the timescale of cell mixing and that of the phase dynamics of genetic oscillators 

(Uriu et al., 2013). To overcome this difficulty, we developed a physical model of cell 
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movement to reproduce the observed mixing in zebrafish embryos. Since cell tracking was 

performed using nuclear positions, we hypothesized that linear increase of MSDD at shorter 

time reflects motion of nucleus within cytoplasm, while power law increase at longer time 

indicates persistent cell movement constrained by neighboring cells. We tested this 

hypothesis by fitting the physical model to the MSDD data obtained from embryonic images.  

 

Modeling cell movement 

We chose a description of cell movement in PSM and tailbud allowing for direct comparison 

between timescales of cell mixing and oscillator phase dynamics. Because nuclei can move 

within cytoplasm and MSDD was computed with nuclear positions, the model describes 

movement of both cells and nuclei. Cells were described as spheres of diameter dc in a 

confined three-dimensional space representing a local region somewhere in PSM or tailbud 

(Fig. 3A). The number of cells N in the model was set to fit cell density observed in embryos 

(Fig. S7, Supporting Text). We did not consider cell proliferation and apoptosis in the model. 

A similar description of a cell population was previously used to study synchronization 

dynamics (Tiedemann et al., 2012; Tiedemann et al., 2007; Tiedemann et al., 2014). However, 

this previous model did not consider cell movement. 

 

We assumed that cells are self-propelled particles experiencing physical contact forces 

between them. We wrote the over-damped equation of motion for the cell center xi(t) (i = 1, 

2, ..., N) (Uriu and Morelli, 2014): 

dxi t 
dt

 v0ni t   F xi, x j 
j1
ji

N

 Fb xi  .        (4) 

The first term describes spontaneous movement of cells. Without forces, cells move in 

direction ni at speed v0. This direction of spontaneous motion ni is a vector performing 

random walk on a unit sphere. Note that a cell moving at the instantaneous velocity dxi/dt = 

v0ni possesses a finite persistence of direction of motions, as reported previously (Lawton et 

al., 2013; Manning and Kimelman, 2015). The second term describes volume exclusion 

forces between neighboring cells with a strength given by . Two cells at a distance closer 

than cell diameter dc repel each other (Fig. 3A). The third term is the confinement force 

exerted by the domain boundaries. 

 

Since we tracked cell nuclei in embryonic imaging data, we explicitly model nuclear motion 

inside a cell to consider its contribution to MSDD (Fig. 3A). Each nucleus is represented as a 
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sphere of radius rn. We assumed that movement of the cell nucleus was random with a 

diffusion constant Dn, and confined to the cytoplasmic region within the cell diameter. See 

Supporting Text for implementation of the model. 

 

Fig. 3B and Movie 2 show a simulation of the physical model. Note, we plotted only a subset 

of total cells in the simulation in Fig. 3B and Movie 2 for better visibility. The simulation had 

the same cell density as the actual tailbud (Fig. S7). We found that nuclear diffusive motions 

in the cytoplasm explained the linear increase of MSDD at shorter time (Fig. 3C). The 

nucleus did not move when the nuclear diffusion constant Dn was small. In such cases, 

instead of ms(t)  t, MSDD at shorter time increased as ms(t)  t 2 capturing short-time 

persistence of cell body motions (Fig. 3C). Thus, our physical model suggests that linear 

increase of MSDD at early times is caused by nuclear motion within a cell. In anterior PSM, 

the exponent of MSDD was less than one (Fig. 2B). This observation implies that both cell 

and nuclear movement become slower as cells leave the posterior PSM. In simulations in Fig. 

3C, the power law increase in MSDD at longer time is due to the presence of a crossover 

between directed cellular motions at a shorter timescale and random motions at a longer 

timescale. 

 

Fitting the physical model to embryonic MSDD data 

To fit this physical model to experimentally obtained MSDD data in Fig. 2B, we adopted 

Approximated Bayesian Computation based on Markov chain Monte Carlo (ABC MCMC; 

Supporting Text) (Csillery et al., 2010; Sunnaker et al., 2013). ABC has previously been used 

to fit mathematical models to experimental data (Cohen et al., 2014; Marjoram et al., 2003). 

We computed MSDD in simulations using nuclear position for each cell. We defined the 

distance ds between MSDD in simulation and experiment (Supporting Text). If ds is small for 

a given parameter set, the simulation explains the experimental data well. ABC MCMC 

allows parameters in the model to be sampled from a conditional probability distribution P( 

| ds  ), where ε represents a tolerance for fitting and  represents the parameter set in the 

physical model. 

 

We obtained values of cell density , cell diameter dc, and nuclear radius rn by direct 

measurement from embryonic images (Figs. S2, S7; Supporting Text). The model includes 

six additional free parameters determined by ABC MCMC (Fig. S8A, B). We first focused on 

the tailbud. For illustration, we show that choosing a parameter set yielding a small value of 

ds allowed the model to capture the features of the MSDD curve obtained by cell tracking in 
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embryos (Figs. 2B, S6; Tables S1, S2). Moreover, the fitted model could also reproduce the 

population average of directional derivative modulus observed in the tailbud (Fig. 3D), which 

was not used in ABC MCMC fitting. Using the fitted model we estimated single-cell speed 

and velocity auto-correlation in the tailbud (Fig. S9).  

 

To check the model's consistency, we asked if the same model could reproduce the MSDD 

curves observed in anterior PSM. Given that the magnitude of cell mixing forms a spatial 

gradient across the PSM (Figs. 1,2) (Benazeraf et al., 2010; Delfini et al., 2005), we tuned the 

value of v0 while matching the observed cellular density and fitted MSDD in anterior regions 

with all other parameters fixed at their values from the tailbud (Fig. 2B). The fitting became 

more difficult in anterior regions than in posterior, perhaps because the diffusion constant of 

the nucleus may also change along the PSM as cells become non-mobile in anterior regions. 

However, overall, the physical model could reproduce the MSDD observed in experiments in 

different regions of the PSM well with changes only to v0 and the measured density (Fig. 2B). 

We also confirmed that the physical model with similar parameter values could reproduce 

MSDD in the other three imaged embryos (Fig. S6).  

 

Synchronization of coupled mobile phase oscillators 

Applying the physical model we investigated whether the observed tailbud cell mixing would 

be fast enough to affect segmentation clock synchronization. We simulated a coupled phase 

oscillator model to follow the dynamics of synchronization. Each oscillator resides on a cell 

in the physical model Eqn 4, which allows us to reproduce the experimentally observed cell 

mixing (reproduced mixing). Following previous studies (Kuramoto, 1984; Morelli et al., 

2009; Riedel-Kruse et al., 2007; Uriu and Morelli, 2014), we introduced a population of 

phase oscillators θi (i = 1, 2,..., N) with autonomous frequency ωi. The autonomous frequency 

obeys a normal distribution i ~ N(0, σω), where ω0 is mean and σω is standard deviation of 

the distribution. We approximated the value of ω0 from the somitogenesis period at our 

imaging temperature (40 min at 23˚C) (Schroter et al., 2008). We assumed that cells signal to 

those cells touching them, that is when the distance between them is less than the cell 

diameter |xj(t) – xi(t)| ≤ dc. The equation for phase oscillators reads:  

dθiሺtሻ

dt
ൌ ωi + 

κ

ni
෍ sin ቀθjሺtሻ	– θiሺtሻቁ+ ඥ2Dθξθiሺtሻ,                                         			(5)

หxj	– xiห≤dc

 

where  is coupling strength between oscillators, ni is the number of contacting cells for cell i, 

Dθ is phase noise strength and ξθi is white Gaussian noise with i(t) = 0 and i(t)j(t') = 

ij(t – t'). We adopted an open boundary condition in simulations of phase oscillators. 
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The key parameter in the coupled phase oscillator model is coupling strength , setting the 

timescale of change in phase due to interactions, 1/. If the timescale of cell mixing is slower 

than 1/, synchronization dynamics is almost the same as for non-mobile cells (Uriu et al., 

2013). To examine how the effect of the observed mixing depends on coupling strength, we 

changed its value within a plausible range from  = 0.01 min–1 to 0.11 min–1, consistent with 

experimental estimates (Herrgen et al., 2010; Riedel-Kruse et al., 2007). Single-cell level 

observations of relatively slow resynchronization after cell divisions (Delaune et al., 2012) 

also support the above choice of the upper bound of the coupling strength.  

 

To explore the effect of cell mixing, we compared synchronization dynamics of oscillators in 

the presence of reproduced mixing for the tailbud to that of non-mobile oscillators. To quantify 

the degree of phase synchronization in simulations, we introduced the Kuramoto phase order 

parameter (Kuramoto, 1984): 

Z t   1

N
ei j t 

j1

N

 ,           (6) 

where i = √െ1 . When oscillators are synchronized, the value of the order parameter is 

almost one, whereas when they are not, its value is close to zero.  

 

During normal somitogenesis, the oscillators of the segmentation clock must maintain their 

phase synchronization in the presence of noise (Horikawa et al., 2006; Jiang et al., 2000; 

Riedel-Kruse et al., 2007). We first confirmed that the reproduced mixing could enhance 

robustness of the synchronized state against phase noise (Figs. S10A-C and S11). 

 

We next asked how cell mixing affects dynamics towards the synchronized state. We simulated 

time evolution of Z from random phases at initial time, which represents the situation where the 

oscillators have been desynchronized by some external perturbation, for example a DAPT 

“wash-out” experiment (Liao et al., 2016; Riedel-Kruse et al., 2007). In the presence of DAPT, 

cells lose coupling and their phases desynchronize due to noise (Riedel-Kruse et al., 2007). 

After DAPT is washed out Delta-Notch signaling works again and cells rebuild coherent 

oscillations from random phases. Fig. 4A and Movies 3 and 4 show the spatial phase profiles 

developed from random initial phases in simulations. For illustration we set  = 0.07 min–1, a 

value within the estimated range for the coupling strength (Herrgen et al., 2010; Riedel-Kruse 

et al., 2007). Non-mobile cells (top row Fig. 4A; Movie 3) first formed local phase 
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synchronization, which persisted and prevented the system from attaining global 

synchronization. Mobile cells also first formed local synchronization, but could then relax 

these local phase patterns and reach global synchronization quicker (bottom row Fig 4A; 

Movie 4). 

 

The phase order parameter Z increased faster with reproduced mixing than without mixing 

(Fig. 4B), suggesting that observed cell mixing in tailbud could affect synchronization of 

coupled genetic oscillators in vivo. At short timescale (< ~100 min) the values of Z were 

almost the same between these two cases. During this period, oscillators quickly developed 

spatial phase patterns by local interactions. However, at around t = 300 min, we observed a 

difference in Z between these two cases. Although different parameter sets in the model for 

cell movement could reproduce MSDD data in tailbud (Fig. S8), we confirmed that time 

evolution of Z was comparable for similar MSDD time series (Fig. S8F). Thus, the specific 

values of parameters in the physical model are not critical, but the rate of MSDD increase 

determines synchronization dynamics of mobile coupled oscillators. We also confirmed that 

cell mixing in the tailbud of the other three imaged embryos enhanced synchronization (Fig. 

S12). For low coupling strength ( = 0.03 min–1), the effect of mixing could be seen more 

clearly when simulations were started from random initial phases (Fig. S10D). Even for the 

largest tested coupling strength ( = 0.11 min–1), we observed improvement by the 

reproduced mixing (Fig. S10F). Thus, within the estimated range of the coupling strength, 

observed cell mixing enhanced synchronization of oscillators.  

 

In previous experimental studies, recovery of synchronization was quantified by the time 

taken for a normal somite to form after DAPT wash-out (Liao et al., 2016; Riedel-Kruse et al., 

2007). This recovery time represents the time taken for the phase order parameter to surpass a 

certain threshold value Zc: normal somites form when Z  Zc. Using the simulated time series 

shown in Fig. 4B, we computed the first passage time  of a given value of Z (Fig. 4C). The 

difference of first passage time between non-mobile and mobile oscillators became larger as Z 

increased. The time taken to reach Zc can be measured in units of the 40-minute cycle of the 

clock, which represents the number of defective segments. The observed differences in the 

number of segment defects are displayed in Fig. 4C inset. For example, for Zc ~ 0.7, without 

movement the embryo will make ~8 more defective segments than with reproduced mixing. 

Hence, the physical model predicts that recovery time of correct somite boundary formation 

would be strongly influenced by cell mixing. 
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Taken together, these results suggest that there is a biologically plausible range of coupling 

strength where the reproduced cell mixing significantly promotes synchronization of coupled 

phase oscillators. Thus, our quantification of mixing in the developing zebrafish embryo 

combined with theoretical modeling supports the hypothesis that cell mixing in the tailbud 

may promote synchronization of the segmentation clock. 

 

Discussion 
Previous studies on cell movement in development have often focused on the role of relative 

cell movement in perturbing patterns established by signaling systems. Examples include 

effects of cell divisions and intercalations on tissue boundary formation in Drosophila wing 

disc and vertebrate hindbrain (Dahmann et al., 2011). In these and similar cases, cell mixing 

decreases the reliability of the pattern, and mechanisms have been discovered that restrict 

mixing at the boundary. In contrast, local cell-sorting can correct an initial spatially noisy 

specification of cell types to a sharp boundary (Xiong et al., 2013). In the segmentation clock, 

the synchronization of noisy neighboring oscillators is a key step in the generation of a 

coherent pattern that leads to reliable somite boundaries at the anterior end of the PSM 

(Delaune et al., 2012; Jiang et al., 2000; Riedel-Kruse et al., 2007). How mixing of cells in 

PSM and tailbud affects this patterning system is not yet understood.  

 

Here, we developed a framework to analyze and model cell mixing in embryonic tissues, and 

used a quantitative model to investigate whether the observed mixing in the zebrafish tailbud 

could affect synchronization of genetic oscillators. We computed directional derivatives of 

velocity vectors and MSDD to quantify cell mixing across PSM and tailbud (Figs. 1 and 2). 

Then, we fitted a physical model of cell movement to experimental data and reproduced this 

cell mixing in simulations (Figs. 2 and 3). Finally, by simulating a coupled phase oscillator 

model (Fig. 4) with previously estimated coupling parameter values, we showed that the 

reproduced mixing was fast enough to promote synchronization. 

 

Setting a reference frame for cell movement is key to quantification, otherwise global tissue 

movements influence analysis. Previous studies quantified cell movement in PSM and tailbud 

to examine its influence on axis elongation (Benazeraf et al., 2010; Dray et al., 2013; Lawton 

et al., 2013). Setting a reference frame for cellular motions is key to quantification, otherwise 

global tissue movements influence analysis. These previous studies used extracellular matrix  

or position of the anterior PSM  to set the reference frame. The average position of tracked 

cells has also been used as a local reference frame when cell movements are confined within 
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a smaller region of the tissue . Alternatively, image registration algorithms  may remove cell 

displacements caused by embryonic motions. In this study we take a simpler and more direct 

approach that focuses on relative motions and does not rely on a choice of reference frame by 

adopting the spatial derivative of velocity vectors and the difference of displacement vectors, 

the MSDD.  

 

We observed two different regimes of MSDD in 15-17ss embryos imaged at 23˚C. At shorter 

times MSDD increased almost linearly over time. We explained these shorter time behaviors 

by nuclear motions (Fig. 3C). Indeed, diffusive nuclear motions in the cytoplasm have been 

observed in mesenchymal cells migrating on a two-dimensional substrate (Liu et al., 2015). 

At longer times MSDD increased as a power law with an exponent larger than one. We 

explained this power law increase by persistent cell movement (Figs. 3 and S9). A previous 

study using zebrafish embryos at 10ss growing at 18˚C showed that MSD for single cells in 

the tailbud increases as a power law of time and that the exponents are larger than one 

(Lawton et al., 2013). MSDDs from this data set determined with our methods also showed 

power law exponents greater than one (Fig. S13), and were similar to those for 15-17ss 

embryos imaged in the present study. Thus, both previous and present studies indicate that 

cell movement is not a simple random walk in zebrafish posterior PSM. Furthermore, the 

similar rate of MSDD increase observed in those 10ss embryos (Fig. S13) suggests that cell 

mixing at this earlier developmental stage would also influence synchronization of 

oscillators. 

 

Previous theoretical studies examined the effect of cell mixing on synchronization of genetic 

oscillators in the tailbud with an assumption that cell mixing timescale is faster than signaling 

timescale defined by the inverse coupling strength 1/ (Uriu et al., 2012; Uriu and Morelli, 

2014; Uriu et al., 2010). This critical assumption, however, has not been tested 

experimentally. In general, complex cell movement patterns in developing tissues would 

exclude the characterization of cell mixing with a single timescale, as shown in Fig. 3 (Uriu 

and Morelli, 2017). The framework proposed here can predict the impact of observed cell 

mixing on signaling even when cell mixing and signaling includes multiple timescales. 

Current and previous modeling (Uriu and Morelli, 2014) indicate that a main determinant of 

synchronization dynamics is the rate of MSDD increase (Fig. S8). This is an increasing 

function of the ratio v0/ in Eq. (4) and its estimated values are within the range of 0.16-0.3 

(Table S1). Although these obtained values are smaller than those assumed in a previous 

study (Uriu and Morelli, 2014), the observed mixing does enhance synchronization in this 
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range (Figs. 4, S12). Collective behaviors of mobile interacting agents are relevant to not 

only biology but also physics (Fujiwara et al., 2011; Levis et al., 2017; Peruani et al., 2010) 

and technology (Wang et al., 2009). Determining whether the mobility of agents is faster than 

the timescale of interactions is an important step to analyze such systems as well. 

 

A striking feature of the data is the gradient of cell mixing, highest in tailbud and lowest in 

anterior PSM, as previously noted (Benazeraf et al., 2010; Lawton et al., 2013). One 

implication of our findings is that there may exist a threshold in the PSM at which cell 

mixing is no longer beneficial for synchronization (Fig. 5). Oscillations in PSM are organized 

as waves of gene expression that sweep from posterior to anterior. A wave slows as it moves 

anteriorly and stops where the next somite boundary will form (Aulehla et al., 2008; 

Soroldoni et al., 2014). Accordingly, the wavelength of the gene expression stripes becomes 

shorter in the anterior PSM, approaching that of the somite length. If cells moved faster than 

gene expression waves, stripe boundaries would be blurred. Thus, slow cell mixing observed in 

the anterior is consistent with the formation of sharp somite boundaries. In contrast, the 

effective interaction range (Uriu et al., 2013) introduced by fast cell mixing in the tailbud is 

smaller than the large wavelength spanning this region (Soroldoni et al., 2014) and smaller than 

tailbud size (Fig. S14; Supporting Text). Robust synchronization by cell mixing in the tailbud 

(Figs. S10 and S11) is important because cells leave the tailbud carrying their local phase order 

and emerge into the PSM, where a failure in synchronization causes local defects in the gene 

expression stripes, resulting in defective segment boundary formation. 

 

A second implication is that the mixing of cells may itself influence the wave pattern. 

Synchronized cells leave the tailbud and enter the PSM where they participate in formation of 

gene expression stripes with sharp boundaries, as described above. Notably, for some 

intermediate region of the PSM, cell mixing would be still fast enough to affect 

synchronization while the wavelength of gene expression pattern is shortening. Because 

coupling between oscillators influences the wavelength of gene expression stripes (Ares et al., 

2012; Jörg et al., 2015; Murray et al., 2011) and cell mixing extends the range of coupling 

(Fujiwara et al., 2011; Peruani et al., 2010; Uriu et al., 2013), cell mixing may therefore 

influence the wavelength of gene expression patterns in this intermediate PSM region. An 

extended theory that describes the entire PSM and incorporates cell mixing data along the 

axis will reveal to what extent cell mixing affects the wavelength. Direct experimental tests 

of these predictions will require means of locally controlling the mixing of cells in the tissue.  
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Our current analysis suggests that cell mixing in the tailbud is fast enough to influence the 

dynamics of coupled genetic oscillators in the segmentation clock. A key experiment for 

testing the theory in living embryos would be to inhibit cell movement with drugs or mutants. 

A previous study on axial elongation used a drug called blebbistatin to inhibit myosin and 

block cell movement (Benazeraf et al., 2010). Using the framework we developed in this 

paper, one could ask whether impaired cell movement in experimentally treated embryos is 

enough to slow synchronization dynamics. Previous estimates of the synchronization state 

(phase order parameter) in the embryo have relied on morphological proxies such as the 

correct formation of segment boundaries (Riedel-Kruse et al., 2007), which can be modeled 

by first passage time (Fig. 4C). However, it remains unclear what is the value of the 

synchronization state that determines the formation of a normal or defective segment 

boundary. Recently-developed live reporters for oscillatory proteins (Delaune et al., 2012; 

Soroldoni et al., 2014), which should allow direct measurement of the synchronization state 

and dynamics are therefore key to testing the theory.  

 

In summary, our study provides a rigorous and systematic framework to investigate cell 

mixing in one embryological context where the timescale of cell mixing can be faster than 

that of intercellular signaling. Relative cell movement may also influence intercellular 

signaling in other contexts (Uriu et al., 2014), for example in collective migration or 

gastrulation, or in cultured cell populations with Delta-Notch signaling (Matsuda et al., 2015; 

Tsiairis and Aulehla, 2016). In addition, for cells under signaling gradients, the relative 

timescales between mixing and cell type specification by signaling would be important for 

patterning (Xiong et al., 2013). The ratio of timescales between mixing and signaling 

determines the impact of mixing (Uriu et al., 2013). In general, quantification of the mixing 

timescale from imaging data will be simpler than the signaling timescale. Approaches to 

quantify the influence of cell movement on signaling such as those presented here will be 

important to understand other similar processes in development and disease. 

 

Materials and Methods 
 

Imaging setup. Time-lapse imaging data was from (Bhavna et al., 2016). 

 

Cell-tracking algorithm and validation. The gradient vector diffusion algorithm (Li et al., 

2007) was used for detecting positions of cell nuclei. Parameter values are listed in Table S4. 

For cell tracking, the algorithm proposed in (Sbalzarini and Koumoutsakos, 2005) was used 
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(Supporting Text). Validation of these two algorithms was done following (Bhavna et al., 

2016) using synthetic images and three images of chimeric embryos (Supporting Text). In 

addition, a recently proposed nuclear segmentation algorithm (Bhavna et al., 2016) was 

applied to the imaging data to test whether it gave similar MSDD time series (Fig. S5). 

 

Cell density measurement. The number of cell nuclei in a three dimensional box (42×42×20 

μm3; Fig. S7) was counted and divided by the box’s volume. The box was located 20 μm 

away from epithelial tissues to fill the entire region of the box with mesenchymal cells. 

 

Velocity vector in lab reference frame. Velocity vectors for calculation of directional 

derivative and strain rate tensor were defined as: 

viሺtሻ	=	 ൛xiሺt	+	∆tሻ	–	xiሺtሻൟ ∆t⁄ ,        (7) 

where xi(t) is the position of cell i at time t obtained by the tracking algorithm. Δt was set = 5 

(min) to avoid seeing only the fluctuation of a cell nucleus. The same definition of velocity 

was used in simulations of cell movement. 

 

Voronoi tessellation. A three dimensional Voronoi tessellation algorithm in Matlab R2014b 

"delaunayn" was applied to nuclear position data to determine neighbor relations among cells. 

Distances between Voronoi neighbors were calculated by a Matlab custom code. 

 

Measurement of nucleus size. The long axis of a nucleus was visually determined in a x-y 

plane of image stacks. For this, each x-y plane containing the nucleus was visually scanned in 

z direction. When the size of the nucleus reached maximum, the length of its long axis was 

measured in that plane with the line tool from Fiji.  

 

Fitting by ABC MCMC. The algorithm proposed in (Marjoram et al., 2003) was used. 

Parameters values are listed in Table S5 (Supporting Text). Custom code for ABC MCMC 

was written in C language.  

 

Strain rate tensor. To construct a continuum velocity vector field v(t, x) in a 

three-dimensional space from the data for cell velocity vectors vi(t, xi), the smoothed particle 

hydrodynamics (SPH) approach was used. Strain rate tensor was then computed using the 

continuum velocity vector field (Supporting Text). 
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Mean squared difference of displacement vectors. Boxes of size 48×48×z μm3 (z = 47 for 

15ss, 61 for 16ss and 42 for two 17ss embryos) were set in PSM and tailbud (Fig. 2A) and 

cells within each box during imaging period were used for computation of MSDD using Eqn 

3. 

 

Numerical integration of differential equations. The stochastic differential equations 4 and 

5 were solved with the Euler-Maruyama method with time step t = 0.01. Custom code was 

written in C language.  
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Figure S14 Comparison of synchronization dynamics between the mobile oscillator 
model Eqn 5 and a mean-field model Eqn S8.1. Time evolution of the phase order 
parameter Z from (A)-(C) random initial conditions and (D)-(F) the initial condition 

where all oscillators were completely synchronized (Z(0) = 1). (A),(D) k = 0.03, (B),(E) 
0.07 and (C),(F) 0.11 min–1. For mobile oscillators, the parameter set for the tailbad in 
Fig. 2 in the main text was used. The number of oscillators in the simulations was same 
in the mobile oscillator and the mean-field models (N = 346). The standard deviation σω 

for the frequency distribution was scaled as k = σω /w0 where ω0 is the mean of the 
distribution. The noise intensity Dθ was also scaled as Dθ /k = 1/10. Average over 200 
different realizations are plotted. The error bars indicate the standard deviations. 
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y, z}). We describe the magnitude of the nuclear confinement force by an exponential 

function of Dqi(t): 

f !qi( ) = "µb exp
" dc " 2 !qi " 2rn( )

2γ

#

$
%
%

&

'
(
(

!qi

!qi

,     (S6.7) 

where µb is the coefficient of the confinement force, g is the length scale of the force 
and –Dqi / |Dqi| is the vector pointing towards the cell center. By setting this confinement 
force strong enough ( 2Dn µb <<1), the nucleus stayed inside of the cell 0 £ |Dqi| < 
dc/2 – rn. 
 
S7. Approximate Bayesian Computation 
To fit the physical model of cell movement to experimentally obtained mean squared 
difference of displacement vectors (MSDD), we used the Approximate Bayesian 
Computation based on Markov Chain Monte Carlo (ABC MCMC; (Marjoram et al., 
2003)). The physical model described in the section S6 has six free parameters, the 
self-propulsion speed v0, repulsive force coefficient μ, polarity noise strength Dφ, 
diffusion constant of the nucleus Dn, nucleus confinement force μb and confinement 
force length scale γ. A set of these parameters is represented as a vector 

ϑ = v0,µ,Dφ,Dn,µb,γ( )  below. 

 
Given quantitative experimental data Da, the MCMC can in general numerically 
construct the posterior distribution of parameters p ϑ | Da( )  from a prior distribution 
p ϑ( )  with Bayes theory. To do this, the likelihood p Da |ϑ( )  is required but is often 
difficult to derive. ABC MCMC replaces the likelihood by a distance ds  between the 

summary statistics of the data and simulation, and approximates the posterior 
distribution as p ϑ | Da( ) ! p ϑ | ds ! !( )  where ε is a tolerance. 

 
We used the MSDD as the summary statics in the ABC MCMC because the MSDD is 
likely to be a function of all the parameters in the physical model. Let m ti( )  be the 
MSDD measured in an embryo at time ti (i = 1, ..., T) and ms ti( )  be the MSDD 

obtained by a numerical simulation of the physical model. We defined the distance 
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between these MSDD ds m,  ms( )  as: 

ds m,  ms( ) ≡
m ti( )−ms ti( ){ }

2

m ti( )2
i=1

T

∑ .              (S7.1) 

Although both m ti( )  and ms ti( )  are time series data and should have correlations 

between successive time points, we neglected these temporal correlations and treated 
these data as independent data points in Eqn S7.1. 
 
The ABC MCMC algorithm proceeds as follows: 
A1. Draw the values of parameters ϑ j  (j = 0) from the prior distribution p ϑ( )  for 

initialization. 
A2. Propose a set of values of parameters ϑ '  from the proposal distribution 

g ϑ j →ϑ '( ) . 

A3. Carry out a numerical simulation of the physical model with the parameter set ϑ '  
and compute ms ti( ) . 

A4. If ds m,  ms( ) ≤ ε , go to A5, otherwise set ϑ j+1 =ϑ j  and go to A6. 

A5. Set ϑ j+1 =ϑ '  with probability pa =min 1,
p ϑ '( )
p ϑ( )

!

"
##

$

%
&&  and ϑ j+1 =ϑ j  with 

probability 1− pa . 

A6. Set j = j +1  and go to A2. 

 
To define the prior distribution p ϑ( ) , we set a uniform distribution for each parameter: 

p χ( ) =
1

χ max( ) − χ min( ) ,     χ min( ) ≤ χ ≤ χ max( )

0,                        otherwise

#

$
%

&
%

     

(S7.2) 

where χ ∈ v0,µ,Dφ,Dn,µb,γ{ } . The intervals for uniform distributions were chosen to 

be biologically plausible and are listed in Table S5. Then, the prior distribution p ϑ( )  

was defined as: 

p ϑ( ) = p v0( ) p µ( ) p Dφ( ) p Dn( ) p µb( ) p γ( ) .     (S7.3) 
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To propose a set of parameter values from ϑ j , we used 
ϑ ' =ϑ j +Δϑ ,        (S7.4) 

where Δϑ = Δϑ v0
,Δϑµ,ΔϑDφ

,ΔϑDn
,Δϑµb

,Δϑγ( )  is the vector of which each element is 

drawn from the normal distribution N 0,σ χ( ) , ( χ ∈ v0,µ,Dφ,Dn,µb,γ{ } ). Note the 

symmetry g ϑ →ϑ '( ) = g ϑ '→ϑ( )  in this setting. The values of σχ are listed in Table 

S5.  
 

We set the tolerance as e = 2. We collected more than 4000 samples and discarded the 
initial 1000 as transients. To check the convergence of the distribution, we compared 5 
independent realizations of ABC MCMC sampling. Similar distributions were observed 
in all these 5 realizations, one of them is shown in Fig. S8A and B. 
 
We found a few necessary conditions for explaining the MSDD data in the tailbud. 
There was a clear correlation between the self-propulsion velocity v0 and the 

intercellular force coefficient µ (Fig. S8A). These two parameters largely determined 
the cell velocity vi in simulations. To reproduce the experimental MSDD, the cell 
velocity had to be strictly constrained. The length scale of the nuclear confinement force 
γ must be small (Fig. S8B), indicating that nuclei should move freely within cells. 
 
Using the fitted model we estimated single-cell velocities and velocity auto-correlation 
in the tailbud (Fig. S9). It would be difficult to obtain these quantities directly from 
embryonic images due to the influence of global tissue motion and deformation. A 
velocity modulus distribution (Fig. S9A) was obtained from the fit to tailbud data of the 

17 ss embryo in Fig. 2. In the simulation, the mean of velocity modulus was á|v|ñ = 0.58 
± 0.31 µm min–1. This is an estimate of the cellular velocity modulus in vivo. The values 
of the average velocity modulus for the other three embryos estimated from simulations 
were similar to this value (Fig. S9B). We also estimated the timescale of velocity 
auto-correlation for a single cell in the tailbud from the fitted model (Fig. S9C, D). This 
timescale represents the persistence time for a cell to keep moving in one direction. The 
velocity auto-correlation Ca was defined using the velocity vector for cell i in a 
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simulation vi as 

Ca τ( ) =
1
N

vi τ( ) ⋅vi 0( )
vi τ( ) vi 0( )i=1

N

∑ ,       (S7.5) 

where N is the total number of cells in the physical model. 
 
The auto-correlation decays as a double-exponential curve in simulations (Fig. S9C). 

We fitted separate exponential functions c0 exp(–t/ta) at short and long timescales to the 
data and obtained their characteristic time ta. For the 17 ss embryo in Fig. 2A, ta » 4.3 
min for short timescales and ta » 13.3 min for long timescales (Fig. S9C). The timescale 
of the second decay is set by the polarity noise strength Dφ in the model. In addition, the 
values of auto-correlation were quite small (less than 0.2) in this regime. So, we argue 
that the timescale of the first decay is more relevant for cell movement in the tissue. We 
obtained similar values of the persistence time for the other three embryos in 
simulations (Fig. S9D). 
 
S8. Mean-field system 
Our previous study (Uriu et al., 2013) demonstrated that when relative movement of 
oscillators is sufficiently fast, a population of the mobile oscillators behaves as a 
mean-filed system, where each oscillator interacts with all the other oscillators in the 
system. To examine whether the observed cell mixing in the tailbud is fast enough for 
the genetic oscillators to be in the mean-field regime, we compare their dynamics with 
the following mean field system (Kuramoto, 1984): 
dθi t( )
dt

=ωi +
κ
N

sin θ j t( )−θi t( )( )
j=1

N

∑ + 2Dθ ξθi ,     (S8.1) 

where N is the total number of oscillators in the system. We used the same frequency 
distribution and the values of parameters in Eqn S8.1 as those in Eqn 5 in the main text. 
Fig. S14 shows the difference of synchronization dynamics between the mean-field 
system Eqn S8.1 and the oscillators with reproduced cell mixing. When the value of the 

coupling strength k is smaller, their behaviors are closer. As the coupling strength 
increases, the difference becomes larger. The results shown in Fig. S14 suggest that the 
observed cell mixing in the tailbud is not fast enough for the cells to behave as a 
mean-field system. 
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