Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Interviews
    • Sign up for alerts
  • About us
    • About BiO
    • Editors and Board
    • Editor biographies
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact BiO
    • Advertising
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Biology Open
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Biology Open

Advanced search

RSS   Twitter   Facebook   YouTube

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Interviews
    • Sign up for alerts
  • About us
    • About BiO
    • Editors and Board
    • Editor biographies
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contact
    • Contact BiO
    • Advertising
    • Feedback
Research Article
A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors
Huixuan Liang, Simon Hippenmeyer, H. Troy Ghashghaei
Biology Open 2012 1: 1200-1203; doi: 10.1242/bio.20122287
Huixuan Liang
1Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simon Hippenmeyer
2Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Troy Ghashghaei
1Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Troy_Ghashghaei@ncsu.edu
  • Article
  • Figures & tables
  • Info & metrics
  • eLetters
  • PDF
Loading

Summary

Nestin-cre transgenic mice have been widely used to direct recombination to neural stem cells (NSCs) and intermediate neural progenitor cells (NPCs). Here we report that a readily utilized, and the only commercially available, Nestin-cre line is insufficient for directing recombination in early embryonic NSCs and NPCs. Analysis of recombination efficiency in multiple cre-dependent reporters and a genetic mosaic line revealed consistent temporal and spatial patterns of recombination in NSCs and NPCs. For comparison we utilized a knock-in Emx1cre line and found robust recombination in NSCs and NPCs in ventricular and subventricular zones of the cerebral cortices as early as embryonic day 12.5. In addition we found that the rate of Nestin-cre driven recombination only reaches sufficiently high levels in NSCs and NPCs during late embryonic and early postnatal periods. These findings are important when commercially available cre lines are considered for directing recombination to embryonic NSCs and NPCs.

Footnotes

  • Competing interests The authors have no competing interests to declare.

  • Received June 18, 2012.
  • Accepted August 22, 2012.
  • © 2012. Published by The Company of Biologists Ltd

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0/).

View Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

RSSRSS

Keywords

  • Neurogenesis
  • Neural Progenitors
  • Nestin-cre

 Download PDF

Email

Thank you for your interest in spreading the word on Biology Open.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors
(Your Name) has sent you a message from Biology Open
(Your Name) thought you would like to see the Biology Open web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Research Article
A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors
Huixuan Liang, Simon Hippenmeyer, H. Troy Ghashghaei
Biology Open 2012 1: 1200-1203; doi: 10.1242/bio.20122287
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Research Article
A Nestin-cre transgenic mouse is insufficient for recombination in early embryonic neural progenitors
Huixuan Liang, Simon Hippenmeyer, H. Troy Ghashghaei
Biology Open 2012 1: 1200-1203; doi: 10.1242/bio.20122287

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article Navigation

  • Top
  • Article
    • Summary
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Acknowledgements
    • Footnotes
    • References
  • Figures & tables
  • Info & metrics
  • eLetters
  • PDF

Related articles

Cited by...

More in this TOC section

  • Drosophila model of anti-retroviral therapy induced peripheral neuropathy and nociceptive hypersensitivity
  • A modifier screen identifies regulators of cytoskeletal architecture as mediators of Shroom-dependent changes in tissue morphology
  • Wound-induced polyploidization is dependent on Integrin-Yki signaling
Show more RESEARCH ARTICLE

Similar articles

Other journals from The Company of Biologists

Development

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Advertisement

Biology Open and COVID-19

We are aware that the COVID-19 pandemic is having an unprecedented impact on researchers worldwide. The Editors of all The Company of Biologists’ journals have been considering ways in which we can alleviate concerns that members of our community may have around publishing activities during this time. Read about the actions we are taking at this time.

Please don’t hesitate to contact the Editorial Office if you have any questions or concerns.


2020 at The Company of Biologists

Despite 2020’s challenges, we achieved a lot at The Company of Biologists. In the midst of the pandemic, we have seen long-term projects and new ventures come to fruition. Read our full lowdown of 2020.


Interview- Sebastian Markert

Sebastian Markert is first author of a paper in BiO using C. elegans to model amyotrophic lateral sclerosis. In an interview, he talks about the potential implications of his work and his future plans.


Three communities to support biologists to everywhere

Online communities have never been more important. If you’re looking for somewhere to meet fellow scientists, take part in topical discussions and find virtual events in your field, take a look at each of our community sites:

  • The Node: the community site for and by developmental biologists
  • preLights: the preprint highlights service run by the biological community
  • FocalPlane: the community site for microscopists and biologists alike

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Interviews
  • Sign up for alerts

About us

  • About BiO
  • Editors and Board
  • Editor biographies
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For Authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access

Journal Info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact BiO
  • Advertising
  • Feedback

Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992