Summary
Asynchronous replication of the genome has been associated with different rates of point mutation and copy number variation (CNV) in human populations. Here, our aim was to investigate whether the bias in the generation of CNV that is associated with DNA replication timing might have conditioned the birth of new protein-coding genes during evolution. We show that genes that were duplicated during primate evolution are more commonly found among the human genes located in late-replicating CNV regions. We traced the relationship between replication timing and the evolutionary age of duplicated genes. Strikingly, we found that there is a significant enrichment of evolutionary younger duplicates in late-replicating regions of the human and mouse genome. Indeed, the presence of duplicates in late-replicating regions gradually decreases as the evolutionary time since duplication extends. Our results suggest that the accumulation of recent duplications in late-replicating CNV regions is an active process influencing genome evolution.
Footnotes
Author Contributions D.J., D.R. and A.V. were responsible for conception and design. D.J., D.R. and T.M.-B. were responsible for acquisition of data. D.J., D.R., Ó.F.-C. and A.V. were responsible for analysis and interpretation of data. All authors were responsible for drafting or revising the article.
Competing interests The authors have no competing interests to declare.
- Received October 15, 2013.
- Accepted October 23, 2013.
- © 2013. Published by The Company of Biologists Ltd
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.