ABSTRACT
SNAREs (SNAP receptors) are the key components of protein complexes that drive membrane fusion. Here, we report the function of a SNARE, Syntaxin 5 (Syx5), in the development of photoreceptors in Drosophila. In wild-type photoreceptors, Syx5 localizes to cis-Golgi, along with cis-Golgi markers: Rab1 and GM130. We observed that Syx5-deficient photoreceptors show notable accumulation of these cis-Golgi markers accompanying drastic accumulation of vesicles between endoplasmic reticulum (ER) and Golgi cisternae. Extensive analysis of Rh1 (rhodopsin 1) trafficking revealed that in Syx5-deficient photoreceptors, Rh1 is exported from the ER with normal kinetics, retained in the cis-Golgi region along with GM130 for a prolonged period, and then subsequently degraded presumably by endoplasmic reticulum-associated protein degradation (ERAD) after retrieval to the ER. Unlike our previous report of Rab6-deficient photoreceptors – where two apical transport pathways are specifically inhibited – vesicle transport pathways to all plasma membrane domains are inhibited in Syx5-deficient photoreceptors, implying that Rab6 and Syx5 are acting in different steps of intra-Golgi transport. These results indicate that Syx5 is crucial for membrane protein transport, presumably during ER-derived vesicle fusion to form cis-Golgi cisternae.
Footnotes
Competing interests
The authors declare no competing or financial interests.
Author contributions
T.S., A.K.S. conception and design, acquisition of data, analysis and interpretation of data, drafting and revising of the article; Y.N. acquisition of data, analysis and interpretation of data, drafting and revising the article.
Funding
This work was supported by Precursory Research for Embryonic Science and Technology [grant no. 25-J-J4215 to A.K.S.], KAKENHI [grant no. 15K07050 to A.K.S.].
Supplementary information
Supplementary information available online at http://bio.biologists.org/lookup/doi/10.1242/bio.020958.supplemental
- Received July 27, 2016.
- Accepted August 25, 2016.
- © 2016. Published by The Company of Biologists Ltd
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.