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Role of water flow regime in the swimming behaviour and escape
performance of a schooling fish
Lauren E. Nadler1,2,*,‡, Shaun S. Killen3, Paolo Domenici4 and Mark I. McCormick1,2

ABSTRACT
Animals are exposed to variable and rapidly changing environmental
flow conditions, such as wind in terrestrial habitats and currents in
aquatic systems. For fishes, previous work suggests that individuals
exhibit flow-induced changes in aerobic swimming performance. Yet,
no one has examined whether similar plasticity is found in fast-start
escape responses, which are modulated by anaerobic swimming
performance, sensory stimuli and neural control. In this study, we
used fish from wild schools of the tropical damselfish Chromis viridis
from shallow reefs surrounding Lizard Island in theGreat Barrier Reef,
Australia. The flow regime at each site was measured to ascertain
differences in mean water flow speed and its temporal variability.
Swimming and escape behaviour in fish schools were video-recorded
in a laminar-flow swim tunnel. Though each school’s swimming
behaviour (i.e. alignment and cohesion) was not associated with local
flow conditions, traits linked with fast-start performance (particularly
turning rate and the distance travelled with the response) were
significantly greater in individuals from high-flow habitats. This
stronger performance may occur due to a number of mechanisms,
such as an in situ training effect or greater selection pressure for faster
performance phenotypes in areas with high flow speed.

This article has an associated First Person interview with the first
author of the paper.
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INTRODUCTION
Environmental flow conditions (e.g. wind in terrestrial habitats and
currents in aquatic systems) can be variable and rapidly changing in
many habitat types (Madin et al., 2006; McLaren et al., 2014).
For associated animal communities, variability in flow adds a
level of complexity to activities such as foraging and navigation,
particularly for animals that fly or swim (Krupczynski and Schuster,
2008; Riley et al., 1999; Srygley, 2001; Thorup et al., 2003).

This additional challenge is the result of drift, in which animals must
compensate for downstream displacement in order to effectively
engage in essential activities (McLaren et al., 2014). In complex
marine habitats, water flow patterns are influenced by wind, weather
and tide conditions as well as the bathymetry of the benthos
(Johansen, 2014; Madin et al., 2006; Nikora, 2010; Poff et al.,
1997). In this era of rapidly changing climates, storm frequency and
intensity are likely to increase in the future (Huntington, 2006),
potentially changing temporal and spatial water flow patterns and
breaking down structural complexity (Lilley and Schiel, 2006;
Madin and Connolly, 2006). Acute high-flow events could present
problems for animal assemblages, as the behaviour and physiology
of resident animals are likely suited to their habitat’s original
conditions (Fulton and Bellwood, 2005; Johansen et al. 2007;
Munks et al., 2015; Nunes et al., 2013).

Many fishes use group living (e.g. schooling) as a mechanism
that may reduce energy costs associated with swimming (Abrahams
and Colgan, 1985; Herskin and Steffensen, 1998; Marras et al.,
2015; Weihs, 1973). Schooling is widespread among fish species
and carries benefits for individuals with respect to predator
avoidance, foraging opportunities and energy use (Krause and
Ruxton, 2002; Nadler et al., 2016; Shaw, 1978). However, these
benefits depend on how well the members of a school can
coordinate their behaviours (Handegard et al., 2012). To maximise
the benefits of grouping, schools exhibit plasticity in behavioural
traits in response to individual needs and environmental stimuli,
particularly in group cohesion, coordination and positional
preferences (Hansen et al., 2015; Killen et al., 2012; Krause and
Ruxton, 2002; Sogard and Olla, 1997; Ward and Webster, 2016;
Webster et al., 2007). Environmental conditions such as water flow
regime can influence behavioural and physiological phenotypes of
both solitary and schooling fish (Anwar et al., 2016; Binning et al.,
2015; Langerhans, 2008; Liao, 2007; West-Eberhard, 1989).
Chicoli et al. (2014) found that individuals and schools exhibit a
greater rate of reaction to a threat under an acute high flow treatment
compared to a no-flow treatment. In wild-caught fish, Binning et al.
(2014) found that fish from wave-exposed (and hence higher flow)
sites exhibited greater aerobic swimming performance than
individuals from sheltered (lower flow) sites.

The fast-start escape response is one of the main forms of defence
used by fish against a predator that has initiated a strike. This
response consists of a rapid, anaerobically-fuelled acceleration
typically mediated by a pair of higher order command neurons
called Mauthner cells (M-cell) in response to threatening sensory
stimuli (Domenici, 2010; Korn and Faber, 2005). Hence, this
behaviour is modulated by anaerobic swimming performance,
sensory abilities and neural control. This type of response typically
occurs on the order of milliseconds and is generally divided
into three stages for the purpose of comparative analysis: stage
1 – unilateral muscle contraction on the side of the body opposite
to the stimulus, causing the fish to bend into a C shape; stageReceived 15 December 2017; Accepted 3 September 2018
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2 – contralateral muscle contraction, causing the tail to flip around
creating additional forward acceleration; and stage 3 – variable stage
with fish either gliding or burst swimming (Domenici and Blake,
1997; Tytell and Lauder, 2008; Wakeling, 2005). Anaerobic
swimming performance in particular may be fundamental to
survival under high flow conditions. Anaerobic swimming is
characterised by burst-type swimming, powered by fast, glycolytic
white muscle (Olson, 1998; Webb, 1998). These rapid movements
may allow animals to copewith sudden changes in flow regime. In the
absence of M-cell firing, escape responses can occur through
activation of other homologous reticulospinal neurons, but typically
exhibit a slower reaction time (i.e. latency) and kinematic output [e.g.
turning rate in stage 1 and distance covered during the response; Eaton
et al. (2001)].Whether differences in the flow conditions experienced
by an individual throughout development may alter fast-start escape
responses of individual fish or fish schools through phenotypic
plasticity or selection remains unknown (Binning et al., 2014, 2015).
Using schools of a gregarious coral reef fish, we investigated how

native water flow regimes experienced at the school’s home reef
affected school swimming behaviour and individual escape
performance. We hypothesized that, when tested under the same
flow conditions in the laboratory, schools collected from higher flow
habitats would exhibit more cohesive and coordinated (i.e. aligned)
swimming behaviour. We expect this more effective swimming
pattern to aid in eliciting faster and more agile escape responses in
individuals from higher flow reefs, due to a combination of
phenotypic plasticity to changing environmental conditions and
stronger selective pressures in habitats with greater flow.

RESULTS
A subset of 11 wild schools of the tropical damselfish species
Chromis viridis were collected from seven shallow reef sites in the
Lizard Island lagoon, northern Great Barrier Reef, Australia
(Fig. 1A). Water flow speed was measured on five separate days
and differed significantly among sites (LMM: F6,24=3.35, P=0.0154;

Fig. 1B). In particular, sites 4 and 5 exhibited a significantly higher
water flow speed than sites 1, 2, 3, 6 and 7 (Tukey’s test, P<0.05). In
addition, flow speeds were more variable at sites 4 and 5 (Fig. 1C).

School swimming and escape behaviour were assessed in a swim
tunnel flowing at a slow speed [3.2 cm s−1 or∼1 body length (L) s−1;
Fig. 2] both before and after an aerial predator stimulus.P-valueswere
corrected for type I error using a false detection rate (FDR) multiple
test correction [pcutoff=0.0394; Benjamini and Hochberg (1995)].
Pre-stimulus behaviour was video-recorded at 30 frames per second
(fps) and post-stimulus behaviour was recorded in high speed at
240 fps. School cohesion (as measured through nearest neighbour
distance, NND) was not affected by either water flow speed from the
school’s home reef or time in relation to the stimulus [linear mixed-
effects model (LMM) for flow: F1,9=0.21, P=0.6566; LMM for time:
F1,691=1.42, P=0.2344; Fig. 3A]. School alignment was also not
affected by water flow speed (LMM: F1,9=0.00, P=0.9891) but did
vary significantly with time (LMM: F1,691=18.87, P<0.0001)
(Fig. 3B). The interaction between water flow speed and time was
not significant for either NND or alignment (P>pcutoff ).

Individual escape performance was assessed for latency, average
turning rate during stage 1 of the reaction, and distance covered
during the reaction (as a proxy for swimming speed). Individuals
from high flow regime reefs exhibited greater escape performance,
when comparedwith those collected from lower flow sites. Therewas
a trend for latency in fish from high flow sites to be lower (indicating a
faster reaction time) than in individuals from low flow sites, though
this effect was not significant (Fig. 4A; LMM: F1,5=4.46,P=0.0883).
In fish from higher flow sites, average turning rate was significantly
greater than in fish from lower flow sites (Fig. 4B; LMM: F1,5=11.56,
P=0.0193), suggesting that those fish from high flow sites exhibited a
faster muscle contraction rate during stage 1 than those accustomed to
lower flow. Distance covered was also significantly greater in fish
from high flow sites than in fish from low flow sites (Fig. 4C; LMM:
F1,5=7.67, P=0.0394), indicating that those fish swam a further
distance with their escape response.

Fig. 1. Water flow speed. (A) Map of the seven
collection sites. (B) Mean water flow speed at each of
the collection sites (±s.e.m.). Grey circles indicate
values in 2 cm/s bins. (C) Coefficient of variation in
water flow at each of the collection sites.
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DISCUSSION
Our study suggests that while school swimming behaviour is
maintained across a range of localised water flow conditions, higher
and more variable relative water flow speeds are associated with
differences in individual fast-start performance. Water flow regime
is a major driver in the distribution and abundance of behavioural,
physiological and functional traits in fish assemblages in a range
of systems (Binning et al., 2015; Fulton and Bellwood, 2005;
McGuigan et al., 2003; Sinclair et al., 2014). As fast-start responses
are modulated by a range of sensory and neural processes as well as
anaerobic swimming performance, flow is likely inducing change
on a range of functional levels within individual fish through
plasticity and/or selection. These findings therefore indicate that an
individual’s performance may be tailored to the prevailing
conditions at their home reef.
The effect of water flow speed on fast-start escape performance

could occur as a result of a variety of mechanisms. Plasticity in

behavioural traits in response to environmental factors has
previously been demonstrated in response to water flow speed.
Sinclair et al. (2014) observed increased boldness and aggression in
the mosquitofish Gambusia holbrooki acclimated to a high flow
environment when compared to those accustomed to low flow
conditions. Any factor that increases the intensity and frequency of
exercise in resident fishes may create a training effect that leads to
improved physiological and behavioural performance (Anttila et al.,
2011; Davison, 1997; Killen et al., 2016). A number of controlled
laboratory studies have measured a training effect of water flow
speed on aerobic metabolism and swimming performance, and
found greater maximum metabolic rate, gait transition speed and
critical swimming speed (Binning et al., 2015; Sinclair et al., 2014).
Our results indicate that fast-start escape performance is likely
subject to a similar training effect under high flow conditions,
due to plasticity in anaerobic swimming performance, sensory
systems and/or neural control. In humans, resistance training for
both strength and endurance significantly improves anaerobic
performance (Balabinis et al., 2003), suggesting that fish may also
exhibit greater anaerobic swimming performance when they
develop in high flow conditions. In addition, plasticity in the
response to sensory cues occurs throughout ontogeny in a range of
fish species in response to variable habitat conditions, by
compensating for reduced cues in one sense with heightened
sensitivity in other components of the sensory system (Chapman
et al., 2010). Previous studies have also illustrated the scope for
plasticity in fish neural activity, in M-cells in particular (Ebbesson
and Braithwaite, 2012; Korn and Faber, 2005). Much of this
plasticity in M-cell activity can be attributed to the varying
sensitivity of neuromodulators to environmental conditions, which
are integral in facilitating the transition from swimming to escape
motor neurons (Song et al., 2015; Yeh et al., 1996). Variation in
these neuromodulators may therefore be occurring in response to

Fig. 2. Diagram illustrating the swim tunnel experimental arena.

Fig. 3. School swimming performance.
(A) Nearest neighbour distance (NND) and
(B) variability in individual alignment, before
(−) and after (+) the stimulus. Bars are
mean±s.e.m. Circles indicate data for
individual fish in (A) 5 mm bins and
(B) 5° bins. White circles and bars indicate
data from low flow sites (n=56 fish) and
grey circles and bars indicate data from
high flow sites (n=32 fish).
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environmental flow conditions, consequently altering the escape
neuron circuits’ responsiveness.
Fast-start escape performance could also vary due to differences

in selective pressure between high and low flow regimes (Higham
et al., 2015). Previous studies have illustrated differential survival
between fishes with varying locomotor performance (Swain, 1992).
However, behavioural phenotypes may not experience a uniform
degree of selective pressure across habitat types. For instance,
slower performing individuals may experience stronger selective
pressure in high flow compared to low flow regimes. This could
account for the lower incidence of fish with ‘slow’ fast-start
reactions than in schools collected from high flow regime reefs. In a

study by Fu (2015), qingbo carp Spinibarbus sinensis exhibited a
lower mortality rate when they had been acclimated to a high flow
environment compared to those acclimated to still water. In
addition, various studies suggest that water flow may reduce the
ability of the lateral line to detect perturbations in the water created
by attacking predators (Anwar et al., 2016; Feitl et al., 2010; Liao,
2006), potentially creating selection for individuals with a lower
response threshold under high flow conditions. Further studies on
how flow impacts predator strike performance and success would
aid in understanding the contribution of selection to the distribution
of fast-start phenotypes among habitat types.

Unlike fast-start performance of individual fish, there was no
influence of water flow regime on school swimming behaviour.
Previous studies have illustrated the plasticity of school cohesion
and coordination in response to biotic and abiotic cues (Chivers
et al., 1995; Cook et al., 2014; Domenici et al., 2002; Sogard and
Olla, 1997; Webster et al., 2007; Weetman et al., 1998). Under an
acute high flow treatment, Chicoli et al. (2014) found that schools of
the giant danio Devario aequipinnatus exhibited increased
alignment, orienting upstream into the flow. However, the results
of this study suggest that this acute effect of flow on school structure
does not translate into longer lasting effects on the school’s
behaviour when swimming at slower speeds.

Determining root causes of phenotypic divergence in wild-caught
animals can be complicated by the difficulty in characterising all
factors that may possibly influence results. Although we found
differences in the relative water flow conditions among our study
reefs, it is possible that additional factors that are correlated with
water flow (e.g. predator density or behaviour, food availability,
non-random sorting of individuals among groups) could be
influencing the observed trends in escape behaviour (Fu et al.,
2013; Killen et al., 2017; Marras and Domenici, 2013; Yan et al.,
2015). Despite these potential disadvantages of characterising the
distribution of behavioural phenotypes among animals from diverse
natural environments, these types of studies are essential to place
laboratory-based results in an ecological context and to understand
real-world processes. Future work should aim to better understand
which abiotic (e.g. turbulence) and biotic (e.g. food availability)
factors associated with water flow drive the observed plasticity in
escape behaviour. In addition, although it is potentially possible that
the flow in the swim tunnel could affect the sensitivity of fish to
mechano-acoustic stimuli, the flow in our set up was relatively slow
(3.2 cm s−1). Therefore, any interference of the flow with the
stimulation is likely to be minimal. We also controlled for the
location of the school in reference to the stimulus (i.e. waited until
six of the eight fish were in the box in the centre of the flow
chamber) in order to minimise any effect of variability in school
position on stimulus perception.

In complex habitats like coral reefs, changes in bathymetry due to
disturbances such as storms can drastically alter flow conditions
(Lilley and Schiel, 2006; Madin and Connolly, 2006). The results
presented here suggest that a fish’s defensive behaviour is tailored to
its ambient environmental conditions. Therefore, it is possible that
acute high flow events in coral reef habitats could create major
challenges for fish assemblages in the future (Fulton and Bellwood,
2005; Munks et al., 2015; Nunes et al., 2013).

MATERIALS AND METHODS
Fish collection and maintenance
A subset of eleven wild schools of the tropical damselfish species C. viridis
(standard length: 3.45±0.03 cm, body mass: 1.72±0.04 g, mean±s.e.) were
collected from seven shallow reef sites (1.8–4 m depth; Fig. 1A) in the

Fig. 4. Individual fast-start performance. Individual fast-start performance
according to high (grey dots with grey trend line, n=32 fish) or low (white
dots with black trend line, n=56 fish) water flow regimes, including (A)
latency (ms; log y-axis), (B) distance covered (mm) and (C) average
turning rate (°/s).
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Lizard Island lagoon, northern Great Barrier Reef, Australia (14°40′08″S;
145°27′34″E). One to two schools were collected from each site, depending
on the number of distinct schools found living on a given reef (not all sites
contained multiple distinct schools, necessitating this design). Within sites,
schools were separated by a minimum of 50 m and sites were separated by
400–3000 m. Fish were collected using hand nets and barrier nets and
transported to the Lizard Island Research Station (LIRS). At the laboratory,
fish were placed into experimental schools composed of eight individuals
from their original schools and housed in replicate 20 l aquaria in a flow-
through seawater system. Variation in body size within (<0.5 cm range) and
among experimental schools (range=2.9–3.7 cm SL) was minimised (low
flow average SL=3.31 cm, high flow average SL=3.47 cm).

C. viridis is an abundant, live coral-associated schooling species found on
coral reefs throughout the Indo-Pacific region in groups ranging in size from
three to hundreds of individuals (Nadler et al., 2014; Öhman et al., 1998;
Pratchett et al., 2012). Information from a mark-recapture study indicated
that C. viridis exhibit high site fidelity, with 64% of individuals found
within 3 m of their home coral colony upon recapture three weeks later.
Those individuals that had migrated >3 m from their home coral were found
within an average of 34 m from their home coral colony, over a three-week
period of calm weather (Nadler et al., unpublished data), suggesting that
schools separated by a minimum of 50 m (as they were in this study) would
be a part of distinct social groups. Fish were fed to satiation twice daily with
INVE Aquaculture pellets and newly hatched Artemia sp. Laboratory tests
of schooling characteristics and escape response were undertaken within
seven days of capture, to avoid lab-induced changes in performance
capacity.

Water flow measurement
Water flow speed was measured at each of the seven collection sites on five
separate days under varying wind and weather conditions, to determine
relative differences in flow between sites. Measurements were always taken
at high tide (±1 h). Flow speed was determined using a precision vane-wheel
flow meter (Hontzsch Gmbh, Waiblingen, Germany) placed approximately
1.25 m below the water surface. As C. viridis forages on plankton in the
water column above the reef throughout the day (Coughlin and Strickler,
1990; Smith and Warburton, 1992), this depth would be a realistic indicator
of the flow conditions experienced by these schools during processes that
require swimming (particularly foraging). Measures of flow speed (cm s−1)
were logged at 1 Hz for 180 s. An overall mean flow speed was then
calculated for each site using data from all five days.

A previous study at Lizard Island that found that water flow speed at
shallow, sheltered reef sites (comparable to those used here) were dictated
primarily by wind conditions. Particularly, sheltered sites that are <3 m in
depth did not exhibit significant variability until the wind speeds exceeded
15 knots (Johansen, 2014). All measures of water flow speed were taken at
<3 m depth and under wind speeds of <15 knots, allowing us to look at a
relative measure of flow speed among our sites using this methodology.

Swimming behaviour and escape response
Trials were conducted in a custom-built laminar flow swim tunnel (50 cm
length×40 cm width×9 cm height; Fig. 2). This device allowed schools to
swim in non-turbulent conditions at a slow uniform swim speed of
approximately one L s−1 (3.2 cm s−1) for all trials, which mimics natural
flow speed conditions at the seven collection sites on a calm day (Johansen,
2014). This low flow speed encouraged schools to swim but was slow
enough that the fish were able to swim in any orientation to the flow (Nadler,
personal observation). Seawater in the system was maintained at the ambient
temperature for the study period (27–29°C). Experimental schools were
placed in the swim tunnel and allowed to acclimate for 4 h. Afterwards,
school swimming behaviour was video-recorded from below prior to the
stimulus for 15 min (30 fps; Canon Powershot D10), using a mirror placed at
a 45° angle. Escape responses were elicited using a standardised threat
protocol in which a mechanical stimulus is dropped from above the
experimental arena (Domenici et al., 2015). This stimulus was a black
cylindrical object (2.5 cm diameter×12 cm length, 37.0 g) with a tapered
end (to minimise surface waves), suspended 137 cm over the surface of the
water in the swim tunnel. To avoid visual cues prior to the stimulus reaching

the water’s surface and to allow measuring response latency, this object was
dropped through a white PVC pipe that ended immediately before it broke
the water’s surface (Domenici et al., 2008; Turesson and Domenici, 2007).
A thread connecting the stimulus to the release point prevented it from
touching the bottom of the tank (Domenici et al., 2008; Turesson and
Domenici, 2007). As previous studies suggest that the school’s alignment
during an escape response is greatest with lateral stimulation at an angle of
30–120° (Marras et al., 2012), identical stimuli were placed 2 cm from each
of the lateral walls in the centre of the swim tunnel. To control for a stimulus
side preference, the use of the left or right lateral stimulus was alternated
between trials. These stimuli remained suspended above the swim tunnel for
the duration of the acclimation period using an electromagnet. Following the
acclimation period, the stimulus was released using a switch, once a
minimum of six of the eight fish were >3.5 cm from any wall of the swim
tunnel and <4 L from the stimulus. This criterion aided in reducing the
constraining effects that the walls of the swim tunnel may exert on an
individuals’ escape response and controlled for differences in escape
performance that can occur with varying distance from the stimulus (Eaton
and Emberley, 1991; Domenici and Batty, 1994, 1997). Each school’s
escape response was video-recorded from below in high speed (240fps;
Casio Exilim HS EX-ZR1000). The swim tunnel was illuminated from
above through a light diffusing filter using two 500 W spotlights.

Kinematic analysis
Videos were analysed using the ImageJ software (v 1.42). School swimming
behaviour before and after the stimulus as well as individual fast-start
performance attributes were examined as defined below.

School swimming behaviour
School swimming behaviour was characterised in terms of (1) school
cohesion (nearest neighbour distance) and (2) alignment. (1) Nearest
neighbour distance (NND): distance to the closest neighbour for each fish
within the school, as measured by the distance from each fish’s centre of
mass when stretched straight (CM). The location of the CM in video footage
was measured as 0.35 L posterior of the snout, based on previous
measurements of generalist fish species (Webb, 1978). The location of the
fish’s CM when stretched straight is a useful point of measurement in fast-
start studies on generalist fishes because of its strong ecological relevance
for predator-prey interactions (Webb and Skadsen, 1980). (2) Alignment:
the variation in the orientation of all school members to the horizontal
(corresponding to the direction of flow; 180°, facing into the flow towards
the front of the tank; 0°, oriented with the flow towards the back of the tank).
As alignment angles spanned up to 360°, circular statistics were employed to
find the school’s mean orientation (Bachelet, 1981), as calculated in the
software Oriana 4 (Kovach Computing Services, Anglesey, Wales). In order
to assess the alignment of each individual to their schoolmates’ orientation,
alignment was calculated as the angular difference (in degrees) between
each individual’s orientation and the school’s mean orientation. From the
15 min pre-stimulus video recording, five frames (one frame every 3 min for
the duration of the recording) were analysed for each of the characteristics
outlined below. In addition, school escape response variables were assessed
at three times post-stimulus from the high-speed video recording (0, 20 and
100 ms post-stimulus). The stimulus onset was defined as the frame at which
the stimulus first touched the water’s surface (indicated by time=0 ms), and
illustrates the school’s behaviour immediately preceding stimulation. The
remaining times (20 ms and 100 ms post-stimulus) were chosen because
approximately one-third and two-thirds of fish in each school exhibited
latencies for within each of those times respectively. Therefore, these times
illustrate the school’s behaviour early and late in the school’s response to
the threat stimulus.

Individual fast-start performance
Individual escape performance was characterised through (1) response
latency, (2) average turning rate and (3) distance covered. Previous studies
suggest that the (4) stimulus distance can influence latency, average
turning rate and distance covered (Domenici and Batty 1994, 1997), so this
measure was included as a covariate in the analysis. (1) Response latency:
the time period between the stimulus onset (contact with the water surface)
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and the fish’s onset of the escape response. (2) Average turning rate:
calculated by dividing the stage 1 angle [the angle between the lines
intersecting the head and CM at the start and end of stage (1) by the
duration of stage 1 (Domenici, 2004)]. Stage 1 is the stage immediately
post-stimulus, in which fish contract the muscles on one side of their body,
causing the fish to bend into a C shape. (3) Distance covered: distance that
the fish’s CM travelled within the first 10 frames (i.e. 42 ms) of their
reaction. This duration was determined using a preliminary analysis, in
which the average duration of stages 1 and 2 were calculated for the escape
response of 24 individuals (i.e. one random fish per trial). This short time
frame was used as a proxy for mean swimming speed in order to avoid
issues with wall effects. Individuals less than 2 L from any wall of the
swim tunnel at the time of their response were excluded from this analysis
[10% of total; Eaton and Emberley (1991)]. (4) Stimulus distance: distance
from the stimulus to the fish’s CM.

Statistical analysis
All statistical analyses were conducted in the R Statistical Environment
v3.2.4 (R Development Core Team, 2016), using the packages ‘nlme’ and
‘multcomp’ (Pinheiro et al., 2016; Torsten et al., 2008). Residual and
quantile-quantile plots were assessed for each model in order to ensure
that all assumptions were met. To meet model assumptions, water flow
speed and latency were log-transformed while NND and alignment were
square-root transformed. Differences in water flow speed among sites
were assessed using a linear mixed-effects model (LMM), with site as a
fixed effect and sampling date as a random effect to account for differences
in conditions among measuring days. For this analysis, flow was analysed
as a continuous variable. Tukey’s HSD post-hoc tests were used to
further investigate significant differences between sites detected by the
LMM.

For all remaining analyses, flow was analysed as a categorical variable
(low flow=8.2–10 m/s; high flow=21.8 m/s). P-values were corrected for
type I error using a false detection rate (FDR) multiple test correction
[pcutoff=0.0394; Benjamini and Hochberg (1995)]. The influence of water
flow speed on school swimming behaviour (NND and alignment) was tested
using a LMMwith water flow speed and time in relation to the stimulus (and
their interaction) as fixed effects, with site, school and individual as random
effects. Individual fast-start performance (latency, average turning rate and
distance covered) was examined using a LMM with flow speed as a fixed
effect and school and site as random effects. Stimulus distance was included
as a covariate in this analysis. The R code used for this analysis has been
included as electronic supplementary material.

Acknowledgements
We thank the Lizard Island Research Station staff, Ross Barrett, Katherine Corkill,
Rahel Zemoi and Stephen Brown for logistical support, Rhondda Jones for statistical
advice and two reviewers for helpful comments that greatly improved themanuscript.
This research was conducted under James Cook University Animal Ethics approval
number A2103.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: L.E.N., S.S.K., P.D., M.I.M.; Methodology: L.E.N., S.S.K., P.D.,
M.I.M.; Software: L.E.N.; Validation: L.E.N.; Formal analysis: L.E.N., S.S.K., P.D.,
M.I.M.; Investigation: L.E.N.; Resources: L.E.N., S.S.K.; Data curation: L.E.N.;
Writing - original draft: L.E.N.; Writing - review & editing: L.E.N., S.S.K., P.D., M.I.M.;
Visualization: L.E.N.; Supervision: P.D., M.I.M.; Project administration: L.E.N.;
Funding acquisition: L.E.N., S.S.K., M.I.M.

Funding
Funding was provided by an Australian Postgraduate Award, International
Postgraduate Research Scholarship, Lizard Island Reef Research Foundation
Doctoral Fellowship, Great Barrier Reef Marine Park Authority Science for
Management Award and James Cook University Graduate Research Scheme to
L.E.N., a Natural Environment Research Council Advanced Fellowship [NE/
J019100/1] to S.S.K., Australian Research Council Discovery Grant [DP170103372]
to M.I.M. and ARC Centre of Excellence for Coral Reef Studies funding
[EI140100117] to M.I.M.

Supplementary information
Supplementary information available online at
http://bio.biologists.org/lookup/doi/10.1242/bio.031997.supplemental

Data availability
The data from this study are available in the Supplementary Material.

References
Abrahams, M. V. and Colgan, P. W. (1985). Risk of predation, hydrodynamic

efficiency and their influence on school structure. Env. Biol. Fish. 13, 195-202.
Anttila, K., Jokikokko, E., Erkinaro, J., Järvilehto, M. and Mänttäri, S. (2011).
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